| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime }+y \cos \left (x \right ) = y^{n} \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime }+x = \frac {a^{2} \left (x y^{\prime }-y\right )}{x^{2}+y^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 1+4 x y+2 y^{2}+\left (1+4 x y+2 x^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y-2 x y^{2}-\left (x^{3}-3 x^{2} y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y^{4} x^{4}+x^{2} y^{2}+x y\right ) y+\left (y^{4} x^{4}-x^{2} y^{2}+x y\right ) x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \left (x y+2 x^{2} y^{2}\right )+x \left (x y-x^{2} y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{4}+2 y+\left (x y^{3}+2 y^{4}-4 x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+y^{2}-2 y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (20 x^{2}+8 x y+4 y^{2}+3 y^{3}\right ) y+4 \left (x^{2}+x y+y^{2}+y^{3}\right ) x y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2}+2 x^{2} y+\left (2 x^{3}-x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y+3 x y^{\prime }+2 x y \left (3 y+4 x y^{\prime }\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {y y^{\prime }+x}{x y^{\prime }-y} = \sqrt {\frac {a^{2}-x^{2}-y^{2}}{x^{2}+y^{2}}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {\left (x +y-a \right ) y^{\prime }}{x +y-b} = \frac {x +y+a}{x +y+b}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -y\right )^{2} y^{\prime } = a^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +y\right )^{2} y^{\prime } = a^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (4 x +y+1\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y = x \sqrt {x^{2}+y^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \ln \left (y\right )+x y^{\prime } = y x \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y = \sqrt {x^{2}+y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (-a^{2}+x^{2}+y^{2}\right )+y \left (x^{2}-y^{2}-b^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {x^{2}+y^{2}+1}{2 x y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime }+x = m \left (x y^{\prime }-y\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y+\left (a \,x^{2} y^{n}-2 x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \left (2 x^{2} y+{\mathrm e}^{x}\right )-\left ({\mathrm e}^{x}+y^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {x^{\prime }}^{2} = k^{2} \left (1-{\mathrm e}^{-\frac {2 g x}{k^{2}}}\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y y^{\prime }+b y^{2} = a \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = {\mathrm e}^{3 x -2 y}+x^{2} {\mathrm e}^{-2 y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+y^{2}+x -\left (2 x^{2}+2 y^{2}-y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y+3 x y^{\prime }+2 x y \left (3 y+4 x y^{\prime }\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \left (1+\frac {1}{x}\right )+\cos \left (y\right )+\left (x +\ln \left (x \right )-x \sin \left (y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (2 x +2 y+3\right ) y^{\prime } = x +y+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x \left (2 \ln \left (x \right )+1\right )}{\sin \left (y\right )+y \cos \left (y\right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} s^{\prime }+x^{2} = x^{2} {\mathrm e}^{3 s}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = {\mathrm e}^{x -y} \left ({\mathrm e}^{x}-{\mathrm e}^{y}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sin \left (x +y\right )+\cos \left (x +y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {\tan \left (y\right )}{x} = \frac {\tan \left (y\right ) \sin \left (y\right )}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}-a y = \left (a x -y^{2}\right ) y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \left ({\mathrm e}^{x}+2 x y\right )-{\mathrm e}^{x} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime }+y^{2} = y y^{\prime } x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{{3}/{2}}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y-x y^{\prime }+x^{2}+1+x^{2} \sin \left (y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sec \left (y\right )^{2} y^{\prime }+2 x \tan \left (y\right ) = x^{3}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime }+\frac {a x +b y+c}{b x +f y+e} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-n^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{\prime \prime }+5 x^{\prime }-12 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }-54 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 9 x^{\prime \prime }+18 x^{\prime }-16 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }-5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 6 y-5 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{4 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = 5 x +2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }-15 y = 15 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sec \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 y^{\prime }+y^{\prime \prime } = 2 \,{\mathrm e}^{\frac {5 x}{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 p y^{\prime }+\left (p^{2}+q^{2}\right ) y = {\mathrm e}^{k x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+9 y = \sin \left (2 x \right )+\cos \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+a^{2} y = \cos \left (a x \right )+\cos \left (b x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = {\mathrm e}^{x}+\sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-12 y = \cos \left (4 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y = 2 \sin \left (\frac {x}{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sin \left (3 x \right )-\cos \left (\frac {x}{2}\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }-6 y^{\prime } = x^{2}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 y^{\prime \prime }+y^{\prime \prime \prime } = {\mathrm e}^{2 x}+x^{2}+x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime \prime } = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{2 x} \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+4 y = {\mathrm e}^{x} \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = \cosh \left (x \right ) \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-7 y^{\prime }-6 y = {\mathrm e}^{2 x} \left (1+x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+y^{\prime \prime }+y^{\prime \prime \prime \prime } = x^{2} a +b \,{\mathrm e}^{-x} \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }-12 y = \left (x -1\right ) {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime }+y^{\prime \prime } = x \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = x^{2} \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = x \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{x} \sin \left (x \right ) x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y-4 y^{\prime }+y^{\prime \prime } = 8 x^{2} {\mathrm e}^{2 x} \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = {\mathrm e}^{-x}+\cos \left (x \right )+x^{3}+{\mathrm e}^{x} \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+y^{\prime \prime }+y^{\prime \prime \prime \prime } = {\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (6\right )}-2 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+3 y^{\prime \prime }-2 y^{\prime }+y = \sin \left (\frac {x}{2}\right )^{2}+{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+y^{\prime \prime }+16 y = 16 x^{2}+256
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 3 \cos \left (x \right )^{2}+2 \sin \left (x \right )^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = 96 \sin \left (2 x \right ) \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}-13 y^{\prime \prime \prime }+26 y^{\prime \prime }+82 y^{\prime }+104 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+10 y+37 \sin \left (3 x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = 24 x \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}-7 y^{\prime }+12 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}-5 y^{\prime }+6 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}-9 y^{\prime }+18 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}+2 x y^{\prime }-3 x^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right ) = y^{2}
\]
|
✓ |
✓ |
✓ |
|