6.131 Problems 13001 to 13100

Table 6.261: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

13001

\[ {} x \left (x +y\right ) y^{\prime \prime }+x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-y = 0 \]

13002

\[ {} 2 x y y^{\prime \prime }-x {y^{\prime }}^{2}+y y^{\prime } = 0 \]

13003

\[ {} x^{2} \left (y-1\right ) y^{\prime \prime }-2 x^{2} {y^{\prime }}^{2}-2 x \left (y-1\right ) y^{\prime }-2 y \left (y-1\right )^{2} = 0 \]

13004

\[ {} x^{2} \left (x +y\right ) y^{\prime \prime }-\left (x y^{\prime }-y\right )^{2} = 0 \]

13005

\[ {} x^{2} \left (x -y\right ) y^{\prime \prime }+a \left (x y^{\prime }-y\right )^{2} = 0 \]

13006

\[ {} 2 x^{2} y y^{\prime \prime }-x^{2} \left (1+{y^{\prime }}^{2}\right )+y^{2} = 0 \]

13007

\[ {} a \,x^{2} y y^{\prime \prime }+b \,x^{2} {y^{\prime }}^{2}+c x y y^{\prime }+d y^{2} = 0 \]

13008

\[ {} x \left (1+x \right )^{2} y y^{\prime \prime }-x \left (1+x \right )^{2} {y^{\prime }}^{2}+2 \left (1+x \right )^{2} y y^{\prime }-a \left (x +2\right ) y^{2} = 0 \]

13009

\[ {} 8 \left (-x^{3}+1\right ) y y^{\prime \prime }-4 \left (-x^{3}+1\right ) {y^{\prime }}^{2}-12 x^{2} y y^{\prime }+3 x y^{2} = 0 \]

13010

\[ {} y^{2} y^{\prime \prime }-a = 0 \]

13011

\[ {} a x +y {y^{\prime }}^{2}+y^{2} y^{\prime \prime } = 0 \]

13012

\[ {} y^{2} y^{\prime \prime }+y {y^{\prime }}^{2}-a x -b = 0 \]

13013

\[ {} \left (1-2 y\right ) {y^{\prime }}^{2}+\left (1+y^{2}\right ) y^{\prime \prime } = 0 \]

13014

\[ {} \left (1+y^{2}\right ) y^{\prime \prime }-3 y {y^{\prime }}^{2} = 0 \]

13015

\[ {} \left (x +y^{2}\right ) y^{\prime \prime }-2 \left (x -y^{2}\right ) {y^{\prime }}^{3}+y^{\prime } \left (1+4 y y^{\prime }\right ) = 0 \]

13016

\[ {} \left (x^{2}+y^{2}\right ) y^{\prime \prime }-\left (1+{y^{\prime }}^{2}\right ) \left (x y^{\prime }-y\right ) = 0 \]

13017

\[ {} \left (x^{2}+y^{2}\right ) y^{\prime \prime }-2 \left (1+{y^{\prime }}^{2}\right ) \left (x y^{\prime }-y\right ) = 0 \]

13018

\[ {} 2 \left (1-y\right ) y y^{\prime \prime }-\left (1-2 y\right ) {y^{\prime }}^{2}+f \left (x \right ) \left (1-y\right ) y y^{\prime } = 0 \]

13019

\[ {} 2 \left (1-y\right ) y y^{\prime \prime }-\left (1-3 y\right ) {y^{\prime }}^{2}+h \left (y\right ) = 0 \]

13020

\[ {} 3 \left (1-y\right ) y y^{\prime \prime }-2 \left (1-2 y\right ) {y^{\prime }}^{2}-h \left (y\right ) = 0 \]

13021

\[ {} \left (1-y\right ) y^{\prime \prime }-3 \left (1-2 y\right ) {y^{\prime }}^{2}-h \left (y\right ) = 0 \]

13022

\[ {} a y \left (y-1\right ) y^{\prime \prime }+\left (b y+c \right ) {y^{\prime }}^{2}+h \left (y\right ) = 0 \]

13023

\[ {} a y \left (y-1\right ) y^{\prime \prime }-\left (a -1\right ) \left (2 y-1\right ) {y^{\prime }}^{2}+f y \left (y-1\right ) y^{\prime } = 0 \]

13024

\[ {} a b y \left (y-1\right ) y^{\prime \prime }-\left (\left (2 a b -a -b \right ) y+\left (1-a \right ) b \right ) {y^{\prime }}^{2}+f y \left (y-1\right ) y^{\prime } = 0 \]

13025

\[ {} x y^{2} y^{\prime \prime }-a = 0 \]

13026

\[ {} \left (a^{2}-x^{2}\right ) \left (a^{2}-y^{2}\right ) y^{\prime \prime }+\left (a^{2}-x^{2}\right ) y {y^{\prime }}^{2}-x \left (a^{2}-y^{2}\right ) y^{\prime } = 0 \]

13027

\[ {} 2 x^{2} y \left (y-1\right ) y^{\prime \prime }-x^{2} \left (3 y-1\right ) {y^{\prime }}^{2}+2 x y \left (y-1\right ) y^{\prime }+\left (a y^{2}+b \right ) \left (y-1\right )^{3}+c x y^{2} \left (y-1\right )+d \,x^{2} y^{2} \left (1+y\right ) = 0 \]

13028

\[ {} \left (x +y\right ) \left (x y^{\prime }-y\right )^{3}+x^{3} y^{2} y^{\prime \prime } = 0 \]

13029

\[ {} y^{3} y^{\prime \prime }-a = 0 \]

13030

\[ {} \left (1-3 y^{2}\right ) {y^{\prime }}^{2}+y \left (1+y^{2}\right ) y^{\prime \prime } = 0 \]

13031

\[ {} 2 y^{3} y^{\prime \prime }+y^{4}-a^{2} x y^{2}-1 = 0 \]

13032

\[ {} 2 y^{3} y^{\prime \prime }+y^{2} {y^{\prime }}^{2}-x^{2} a -b x -c = 0 \]

13033

\[ {} 2 \left (y-a \right ) \left (y-b \right ) \left (y-c \right ) y^{\prime \prime }-\left (\left (y-a \right )^{2} \left (y-b \right ) \left (y-c \right )+\left (y-b \right ) \left (y-c \right )\right ) {y^{\prime }}^{2}+\left (y-a \right )^{2} \left (y-b \right )^{2} \left (y-c \right )^{2} \left (A_{0} +\frac {B_{0}}{\left (y-a \right )^{2}}+\frac {C_{1}}{\left (y-b \right )^{2}}+\frac {D_{0}}{\left (y-c \right )^{2}}\right ) = 0 \]

13034

\[ {} \left (4 y^{3}-a y-b \right ) y^{\prime \prime }-\left (6 y^{2}-\frac {a}{2}\right ) {y^{\prime }}^{2} = 0 \]

13035

\[ {} \left (4 y^{3}-a y-b \right ) \left (y^{\prime \prime }+f y^{\prime }\right )-\left (6 y^{2}-\frac {a}{2}\right ) {y^{\prime }}^{2} = 0 \]

13036

\[ {} \left (y^{2}-1\right ) \left (a^{2} y^{2}-1\right ) y^{\prime \prime }+b \sqrt {\left (1-y^{2}\right ) \left (1-a^{2} y^{2}\right )}\, {y^{\prime }}^{2}+\left (1+a^{2}-2 a^{2} y^{2}\right ) y {y^{\prime }}^{2} = 0 \]

13037

\[ {} \left (c +2 b x +x^{2} a +y^{2}\right )^{2} y^{\prime \prime }+y d = 0 \]

13038

\[ {} \sqrt {y}\, y^{\prime \prime }-a = 0 \]

13039

\[ {} \sqrt {x^{2}+y^{2}}\, y^{\prime \prime }-a \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = 0 \]

13040

\[ {} \left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2}+\left (1-\ln \left (y\right )\right ) y y^{\prime \prime } = 0 \]

13041

\[ {} \left (b +a \sin \left (y\right )^{2}\right ) y^{\prime \prime }+a {y^{\prime }}^{2} \cos \left (y\right ) \sin \left (y\right )+A y \left (c +a \sin \left (y\right )^{2}\right ) = 0 \]

13042

\[ {} h \left (y\right ) y^{\prime \prime }+a h \left (y\right ) {y^{\prime }}^{2}+j \left (y\right ) = 0 \]

13043

\[ {} y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime }-x y^{2} = 0 \]

13044

\[ {} \left (x y^{\prime }-y\right ) y^{\prime \prime }+4 {y^{\prime }}^{2} = 0 \]

13045

\[ {} \left (x y^{\prime }-y\right ) y^{\prime \prime }-\left (1+{y^{\prime }}^{2}\right )^{2} = 0 \]

13046

\[ {} a \,x^{3} y^{\prime } y^{\prime \prime }+b y^{2} = 0 \]

13047

\[ {} y+3 x y^{\prime }+2 {y^{\prime }}^{3} y+\left (x^{2}+2 y^{2} y^{\prime }\right ) y^{\prime \prime } = 0 \]

13048

\[ {} y^{3}+\left ({y^{\prime }}^{2}+y^{2}\right ) y^{\prime \prime } = 0 \]

13049

\[ {} \left ({y^{\prime }}^{2}+a \left (x y^{\prime }-y\right )\right ) y^{\prime \prime }-b = 0 \]

13050

\[ {} \left (a \sqrt {1+{y^{\prime }}^{2}}-x y^{\prime }\right ) y^{\prime \prime }-{y^{\prime }}^{2}-1 = 0 \]

13051

\[ {} {y^{\prime \prime }}^{2}-a y-b = 0 \]

13052

\[ {} a^{2} {y^{\prime \prime }}^{2}-2 a x y^{\prime \prime }+y^{\prime } = 0 \]

13053

\[ {} 2 \left (x^{2}+1\right ) {y^{\prime \prime }}^{2}-x \left (x +4 y^{\prime }\right ) y^{\prime \prime }+2 \left (x +y^{\prime }\right ) y^{\prime }-2 y = 0 \]

13054

\[ {} 4 {y^{\prime }}^{2}-2 \left (3 x y^{\prime }+y\right ) y^{\prime \prime }+3 x^{2} {y^{\prime \prime }}^{2} = 0 \]

13055

\[ {} \left (2-9 x \right ) x^{2} {y^{\prime \prime }}^{2}-6 \left (1-6 x \right ) x y^{\prime } y^{\prime \prime }+6 y y^{\prime \prime }-36 x {y^{\prime }}^{2} = 0 \]

13056

\[ {} y {y^{\prime \prime }}^{2}-a \,{\mathrm e}^{2 x} = 0 \]

13057

\[ {} \left (a^{2} y^{2}-b^{2}\right ) {y^{\prime \prime }}^{2}-2 a^{2} y {y^{\prime }}^{2} y^{\prime \prime }+\left (a^{2} {y^{\prime }}^{2}-1\right ) {y^{\prime }}^{2} = 0 \]

13058

\[ {} \left (y^{2}-x^{2} {y^{\prime }}^{2}+x^{2} y y^{\prime \prime }\right )^{2}-4 x y \left (x y^{\prime }-y\right )^{3} = 0 \]

13059

\[ {} 32 y^{\prime \prime } \left (x y^{\prime \prime }-y^{\prime }\right )^{3}+\left (2 y y^{\prime \prime }-{y^{\prime }}^{2}\right )^{3} = 0 \]

13060

\[ {} \sqrt {a {y^{\prime \prime }}^{2}+b {y^{\prime }}^{2}}+c y y^{\prime \prime }+d {y^{\prime }}^{2} = 0 \]

13061

\[ {} y^{\prime \prime \prime }-a^{2} \left ({y^{\prime }}^{5}+2 {y^{\prime }}^{3}+y^{\prime }\right ) = 0 \]

13062

\[ {} y^{\prime \prime \prime }+y y^{\prime \prime }-{y^{\prime }}^{2}+1 = 0 \]

13063

\[ {} y^{\prime \prime \prime }-y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

13064

\[ {} a y y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

13065

\[ {} x^{2} y^{\prime \prime \prime }+x y^{\prime \prime }+\left (2 x y-1\right ) y^{\prime }+y^{2}-f \left (x \right ) = 0 \]

13066

\[ {} x^{2} y^{\prime \prime \prime }+x \left (y-1\right ) y^{\prime \prime }+x {y^{\prime }}^{2}+\left (1-y\right ) y^{\prime } = 0 \]

13067

\[ {} y^{3} y^{\prime }-y^{\prime } y^{\prime \prime }+y y^{\prime \prime \prime } = 0 \]

13068

\[ {} 15 {y^{\prime }}^{3}-18 y y^{\prime } y^{\prime \prime }+4 y^{2} y^{\prime \prime \prime } = 0 \]

13069

\[ {} 40 {y^{\prime }}^{3}-45 y y^{\prime } y^{\prime \prime }+9 y^{2} y^{\prime \prime \prime } = 0 \]

13070

\[ {} 2 y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime }}^{2} = 0 \]

13071

\[ {} \left (1+{y^{\prime }}^{2}\right ) y^{\prime \prime \prime }-3 y^{\prime } {y^{\prime \prime }}^{2} = 0 \]

13072

\[ {} \left (1+{y^{\prime }}^{2}\right ) y^{\prime \prime \prime }-\left (a +3 y^{\prime }\right ) {y^{\prime \prime }}^{2} = 0 \]

13073

\[ {} y^{\prime \prime } y^{\prime \prime \prime }-a \sqrt {1+b^{2} {y^{\prime \prime }}^{2}} = 0 \]

13074

\[ {} y^{\prime } y^{\prime \prime \prime \prime }-y^{\prime \prime } y^{\prime \prime \prime }+{y^{\prime }}^{3} y^{\prime \prime \prime } = 0 \]

13075

\[ {} 3 y^{\prime \prime } y^{\prime \prime \prime \prime }-5 {y^{\prime \prime \prime }}^{2} = 0 \]

13076

\[ {} 9 {y^{\prime \prime }}^{2} y^{\left (5\right )}-45 y^{\prime \prime } y^{\prime \prime \prime } y^{\prime \prime \prime \prime }+40 y^{\prime \prime \prime } = 0 \]

13077

\[ {} y^{\prime \prime }-f \left (y\right ) = 0 \]

13078

\[ {} y^{\prime \prime \prime } = f \left (y\right ) \]

13079

\[ {} [x^{\prime }\left (t \right ) = a x \left (t \right ), y^{\prime }\left (t \right ) = b] \]

13080

\[ {} [x^{\prime }\left (t \right ) = a y \left (t \right ), y^{\prime }\left (t \right ) = -a x \left (t \right )] \]

13081

\[ {} [x^{\prime }\left (t \right ) = a y \left (t \right ), y^{\prime }\left (t \right ) = b x \left (t \right )] \]

13082

\[ {} [x^{\prime }\left (t \right ) = a x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+a y \left (t \right )] \]

13083

\[ {} [x^{\prime }\left (t \right ) = a x \left (t \right )+b y \left (t \right ), y^{\prime }\left (t \right ) = c x \left (t \right )+b y \left (t \right )] \]

13084

\[ {} [a x^{\prime }\left (t \right )+b y^{\prime }\left (t \right ) = \alpha x \left (t \right )+\beta y \left (t \right ), b x^{\prime }\left (t \right )-a y^{\prime }\left (t \right ) = \beta x \left (t \right )-\alpha y \left (t \right )] \]

13085

\[ {} [x^{\prime }\left (t \right ) = -y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right )] \]

13086

\[ {} \{x^{\prime }\left (t \right )+3 x \left (t \right )+4 y \left (t \right ) = 0, y^{\prime }\left (t \right )+2 x \left (t \right )+5 y \left (t \right ) = 0\} \]

13087

\[ {} \{x^{\prime }\left (t \right ) = -5 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-7 y \left (t \right )\} \]

13088

\[ {} \{x^{\prime }\left (t \right ) = a_{1} x \left (t \right )+b_{1} y \left (t \right )+c_{1}, y^{\prime }\left (t \right ) = a_{2} x \left (t \right )+b_{2} y \left (t \right )+c_{2}\} \]

13089

\[ {} \{x^{\prime }\left (t \right )+2 y \left (t \right ) = 3 t, y^{\prime }\left (t \right )-2 x \left (t \right ) = 4\} \]

13090

\[ {} [x^{\prime }\left (t \right )+y \left (t \right )-t^{2}+6 t +1 = 0, -x \left (t \right )+y^{\prime }\left (t \right ) = -3 t^{2}+3 t +1] \]

13091

\[ {} [x^{\prime }\left (t \right )+3 x \left (t \right )-y \left (t \right ) = {\mathrm e}^{2 t}, y^{\prime }\left (t \right )+x \left (t \right )+5 y \left (t \right ) = {\mathrm e}^{t}] \]

13092

\[ {} [x^{\prime }\left (t \right )+2 x \left (t \right )+y^{\prime }\left (t \right )+y \left (t \right ) = {\mathrm e}^{2 t}+t, x^{\prime }\left (t \right )-x \left (t \right )+y^{\prime }\left (t \right )+3 y \left (t \right ) = {\mathrm e}^{t}-1] \]

13093

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-y \left (t \right ) = {\mathrm e}^{t}, 2 x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+2 y \left (t \right ) = \cos \left (t \right )] \]

13094

\[ {} [4 x^{\prime }\left (t \right )+9 y^{\prime }\left (t \right )+2 x \left (t \right )+31 y \left (t \right ) = {\mathrm e}^{t}, 3 x^{\prime }\left (t \right )+7 y^{\prime }\left (t \right )+x \left (t \right )+24 y \left (t \right ) = 3] \]

13095

\[ {} [4 x^{\prime }\left (t \right )+9 y^{\prime }\left (t \right )+11 x \left (t \right )+31 y \left (t \right ) = {\mathrm e}^{t}, 3 x^{\prime }\left (t \right )+7 y^{\prime }\left (t \right )+8 x \left (t \right )+24 y \left (t \right ) = {\mathrm e}^{2 t}] \]

13096

\[ {} [4 x^{\prime }\left (t \right )+9 y^{\prime }\left (t \right )+44 x \left (t \right )+49 y \left (t \right ) = t, 3 x^{\prime }\left (t \right )+7 y^{\prime }\left (t \right )+34 x \left (t \right )+38 y \left (t \right ) = {\mathrm e}^{t}] \]

13097

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ) f \left (t \right )+y \left (t \right ) g \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right ) g \left (t \right )+f \left (t \right ) y \left (t \right )] \]

13098

\[ {} [x^{\prime }\left (t \right )+\left (a x \left (t \right )+b y \left (t \right )\right ) f \left (t \right ) = g \left (t \right ), y^{\prime }\left (t \right )+\left (c x \left (t \right )+d y \left (t \right )\right ) f \left (t \right ) = h \left (t \right )] \]

13099

\[ {} [x^{\prime }\left (t \right ) = \cos \left (t \right ) x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right ) {\mathrm e}^{-\sin \left (t \right )}] \]

13100

\[ {} [t x^{\prime }\left (t \right )+y \left (t \right ) = 0, t y^{\prime }\left (t \right )+x \left (t \right ) = 0] \]