6.91 Problems 9001 to 9100

Table 6.181: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

9001

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

9002

\[ {} 4 x^{2} y^{\prime \prime }+\left (4 x^{4}-5 x \right ) y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

9003

\[ {} x^{2} y^{\prime \prime }+\left (-3 x^{2}+x \right ) y^{\prime }+y \,{\mathrm e}^{x} = 0 \]

9004

\[ {} 3 x^{2} y^{\prime \prime }+5 x y^{\prime }+3 x y = 0 \]

9005

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+x^{2} y = 0 \]

9006

\[ {} x^{2} y^{\prime \prime }+x \,{\mathrm e}^{x} y^{\prime }+y = 0 \]

9007

\[ {} 2 x^{2} y^{\prime \prime }+\left (x^{2}+5 x \right ) y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

9008

\[ {} 4 x^{2} y^{\prime \prime }-4 x \,{\mathrm e}^{x} y^{\prime }+3 y \cos \left (x \right ) = 0 \]

9009

\[ {} x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+3 \left (x^{2}+x \right ) y^{\prime }+y = 0 \]

9010

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (1+x \right ) y = 0 \]

9011

\[ {} x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-2 y = 0 \]

9012

\[ {} x^{2} y^{\prime \prime }+5 x y^{\prime }+\left (-x^{3}+3\right ) y = 0 \]

9013

\[ {} 2 \left (1+x \right ) y-2 x \left (1+x \right ) y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

9014

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y \left (x^{2}-1\right ) = 0 \]

9015

\[ {} x^{2} y^{\prime \prime }-2 x^{2} y^{\prime }+\left (4 x -2\right ) y = 0 \]

9016

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

9017

\[ {} y^{\prime } = x^{2} y \]

9018

\[ {} y y^{\prime } = x \]

9019

\[ {} y^{\prime } = \frac {x^{2}+x}{y-y^{2}} \]

9020

\[ {} y^{\prime } = \frac {{\mathrm e}^{x -y}}{{\mathrm e}^{x}+1} \]

9021

\[ {} y^{\prime } = x^{2} y^{2}-4 x^{2} \]

9022

\[ {} y^{\prime } = y^{2} \]

9023

\[ {} y^{\prime } = 2 \sqrt {y} \]

9024

\[ {} y^{\prime } = 2 \sqrt {y} \]

9025

\[ {} y^{\prime } = \frac {x +y}{x -y} \]

9026

\[ {} y^{\prime } = \frac {y^{2}}{x^{2}+x y} \]

9027

\[ {} y^{\prime } = \frac {x^{2}+x y+y^{2}}{x^{2}} \]

9028

\[ {} y^{\prime } = \frac {y+x \,{\mathrm e}^{-\frac {2 y}{x}}}{x} \]

9029

\[ {} y^{\prime } = \frac {x -y+2}{x +y-1} \]

9030

\[ {} y^{\prime } = \frac {2 x +3 y+1}{x -2 y-1} \]

9031

\[ {} y^{\prime } = \frac {x +y+1}{2 x +2 y-1} \]

9032

\[ {} y^{\prime } = \frac {\left (x +y-1\right )^{2}}{2 \left (x +2\right )^{2}} \]

9033

\[ {} 2 x y+\left (x^{2}+3 y^{2}\right ) y^{\prime } = 0 \]

9034

\[ {} x^{2}+x y+\left (x +y\right ) y^{\prime } = 0 \]

9035

\[ {} {\mathrm e}^{x}+{\mathrm e}^{y} \left (1+y\right ) y^{\prime } = 0 \]

9036

\[ {} \cos \left (x \right ) \cos \left (y\right )^{2}-\sin \left (x \right ) \sin \left (2 y\right ) y^{\prime } = 0 \]

9037

\[ {} x^{2} y^{3}-x^{3} y^{2} y^{\prime } = 0 \]

9038

\[ {} x +y+\left (x -y\right ) y^{\prime } = 0 \]

9039

\[ {} 2 y \,{\mathrm e}^{2 x}+2 x \cos \left (y\right )+\left ({\mathrm e}^{2 x}-x^{2} \sin \left (y\right )\right ) y^{\prime } = 0 \]

9040

\[ {} 3 x^{2} \ln \left (x \right )+x^{2}+y+x y^{\prime } = 0 \]

9041

\[ {} 2 y^{3}+2+3 x y^{2} y^{\prime } = 0 \]

9042

\[ {} \cos \left (x \right ) \cos \left (y\right )-2 \sin \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

9043

\[ {} 5 y^{2} x^{3}+2 y+\left (3 x^{4} y+2 x \right ) y^{\prime } = 0 \]

9044

\[ {} {\mathrm e}^{y}+x \,{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime } = 0 \]

9045

\[ {} y^{\prime \prime }+y^{\prime } = 1 \]

9046

\[ {} y^{\prime \prime }+{\mathrm e}^{x} y^{\prime } = {\mathrm e}^{x} \]

9047

\[ {} y y^{\prime \prime }+4 {y^{\prime }}^{2} = 0 \]

9048

\[ {} y^{\prime \prime }+k^{2} y = 0 \]

9049

\[ {} y^{\prime \prime } = y y^{\prime } \]

9050

\[ {} x y^{\prime \prime }-2 y^{\prime } = x^{3} \]

9051

\[ {} y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

9052

\[ {} y^{\prime \prime } = -\frac {1}{2 {y^{\prime }}^{2}} \]

9053

\[ {} y^{\prime \prime }+\sin \left (y\right ) = 0 \]

9054

\[ {} y^{\prime \prime }+\sin \left (y\right ) = 0 \]

9055

\[ {} [y_{1}^{\prime }\left (x \right ) = y_{1} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )+y_{2} \left (x \right )] \]

9056

\[ {} [y_{1}^{\prime }\left (x \right ) = y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = 6 y_{1} \left (x \right )+y_{2} \left (x \right )] \]

9057

\[ {} [y_{1}^{\prime }\left (x \right ) = y_{1} \left (x \right )+y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )+y_{2} \left (x \right )+{\mathrm e}^{3 x}] \]

9058

\[ {} [y_{1}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )+x y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{2} \left (x \right )+x^{3} y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right ) x -y_{2} \left (x \right )+{\mathrm e}^{x} y_{3} \left (x \right )] \]

9059

\[ {} y^{\prime } = 2 x \]

9060

\[ {} x y^{\prime } = 2 y \]

9061

\[ {} y y^{\prime } = {\mathrm e}^{2 x} \]

9062

\[ {} y^{\prime } = k y \]

9063

\[ {} 4 y+y^{\prime \prime } = 0 \]

9064

\[ {} y^{\prime \prime }-4 y = 0 \]

9065

\[ {} x y^{\prime }+y = y^{\prime } \sqrt {1-x^{2} y^{2}} \]

9066

\[ {} x y^{\prime } = y+x^{2}+y^{2} \]

9067

\[ {} y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

9068

\[ {} 2 y y^{\prime } x = x^{2}+y^{2} \]

9069

\[ {} x y^{\prime }+y = x^{4} {y^{\prime }}^{2} \]

9070

\[ {} y^{\prime } = \frac {y^{2}}{x y-x^{2}} \]

9071

\[ {} \left (y \cos \left (y\right )-\sin \left (y\right )+x \right ) y^{\prime } = y \]

9072

\[ {} 1+y^{2}+y^{2} y^{\prime } = 0 \]

9073

\[ {} y^{\prime } = {\mathrm e}^{3 x}-x \]

9074

\[ {} y^{\prime } = x \,{\mathrm e}^{x^{2}} \]

9075

\[ {} y^{\prime } \left (1+x \right ) = x \]

9076

\[ {} \left (x^{2}+1\right ) y^{\prime } = x \]

9077

\[ {} \left (x^{2}+1\right ) y^{\prime } = \arctan \left (x \right ) \]

9078

\[ {} x y^{\prime } = 1 \]

9079

\[ {} y^{\prime } = \arcsin \left (x \right ) \]

9080

\[ {} y^{\prime } \sin \left (x \right ) = 1 \]

9081

\[ {} \left (x^{3}+1\right ) y^{\prime } = x \]

9082

\[ {} \left (x^{2}-3 x +2\right ) y^{\prime } = x \]

9083

\[ {} y^{\prime } = x \,{\mathrm e}^{x} \]

9084

\[ {} y^{\prime } = 2 \cos \left (x \right ) \sin \left (x \right ) \]

9085

\[ {} y^{\prime } = \ln \left (x \right ) \]

9086

\[ {} \left (x^{2}-1\right ) y^{\prime } = 1 \]

9087

\[ {} x \left (x^{2}-4\right ) y^{\prime } = 1 \]

9088

\[ {} \left (1+x \right ) \left (x^{2}+1\right ) y^{\prime } = 2 x^{2}+x \]

9089

\[ {} y^{\prime } = 2 x y+1 \]

9090

\[ {} y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

9091

\[ {} y^{\prime } = \frac {2 x y^{2}}{1-x^{2} y} \]

9092

\[ {} 2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

9093

\[ {} x^{5} y^{\prime }+y^{5} = 0 \]

9094

\[ {} y^{\prime } = 4 x y \]

9095

\[ {} y^{\prime }+y \tan \left (x \right ) = 0 \]

9096

\[ {} 1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

9097

\[ {} y \ln \left (y\right )-x y^{\prime } = 0 \]

9098

\[ {} x y^{\prime } = \left (-4 x^{2}+1\right ) \tan \left (y\right ) \]

9099

\[ {} y^{\prime } \sin \left (y\right ) = x^{2} \]

9100

\[ {} y^{\prime }-y \tan \left (x \right ) = 0 \]