Chapter 1
Introduction and Summary of results

1.1 Introduction
1.2 Summary of results
1.3 Conclusions

1.1 Introduction

This report shows the result of running Maple and Mathematica on my collection of differential equations. These were collected over time and stored in sqlite3 database. These were collected from a number of textbooks and other references such as Kamke and Murphy collections. All books used are listed here.

The current number of differential equations is [15472].

Both Maple and Mathematica are given a CPU time limit of 3 minutes to solve each ode else the problem is considered not solved and marked as failed.

When Mathematica returns DifferentialRoot as a solution to an ode then this is considered as not solved. Similarly, when Maple returns DESol or ODSESolStruc, then this is also considered as not solved.

If CAS solves the ODE within the timelimit, then it is counted as solved. No verification is done to check that the solution is correct or not.

To reduce the size of latex output, in Maple the command simplify is called on the solution with timeout of 3 minutes. If this times out, then the unsimplified original ode solution is used otherwise the simplified one is used.

Similarly for Mathematica, Simplify is next called. If this timesout, then the unsimplified solution is used else the simplified one is used. The time used for simplification is not counted in the CPU time used. The CPU time used only records the time used to solve the ode.

Tests are run under windows 10 with 128 GB RAM running on intel i9-12900K 3.20 GHz

1.2 Summary of results

1.2.1 Percentage solved and CPU performance

The following table summarizes perentage solved for each CAS

Table 1.1: Summary of final results
System % solved Number solved Number failed
Maple 2024 95.489 14774 698
Mathematica 14 94.577 14633 839

The following table summarizes the run-time performance of each CAS system.

Table 1.2: Summary of run time performance of each CAS system
System mean time (sec) mean leaf size total time (min) total leaf size
Maple 2024 0.202 147.54 52.009 2282723
Mathematica 14 3.232 221.31 833.444 3424131

The problem which Mathematica produced largest leaf size of \(413606\) is 9721.

The problem which Maple produced largest leaf size of \(949416\) is 12388.

The problem which Mathematica used most CPU time of \(175.525\) seconds is 6197.

The problem which Maple used most CPU time of \(140.984\) seconds is 6839.

1.2.2 Performance based on ODE type

The following gives the performance of each CAS based on the type of the ODE. Three different classifications of ODE’s are used. The first uses Maple’s own ode advisor classification. The second uses own ODE classification used in my ode solver. The third classification uses a simplified classification of ODE’s which is based on generic type of the ODE.

Performance using Maple’s ODE types classification

This uses ODE classifications based on Maple’s ode advisor The following table gives count of the number of ODE’s for each ODE type, where the ODE type here is as classified by Maple’s odeadvisor, and the percentage of solved ODE’s of that type for each CAS. It also gives a direct link to the ODE’s that failed if any.

Table 1.3: Percentage solved per Maple ODE type

Type of ODE

Count

Mathematica

Maple

[_quadrature]

873

98.05%
[885, 4266, 4275, 12127, 12129, 12910, 12911, 12914, 12935, 12936, 12962, 12965, 12966, 12967, 14201, 15125, 15126]

99.77%
[7303, 11994]

[[_linear, ‘class A‘]]

304

100.00%

99.01%
[7300, 7301, 11518]

[_separable]

1196

99.16%
[3022, 6264, 8667, 11415, 14980, 14999, 15000, 15001, 15002, 15006]

99.50%
[408, 409, 6264, 6418, 11415, 15001]

[_Riccati]

322

67.39%
[958, 1697, 1698, 1700, 1701, 1702, 2707, 3304, 3324, 3326, 3339, 3639, 4386, 7345, 8447, 10339, 10346, 10359, 10363, 10415, 10432, 10436, 10440, 10445, 10452, 10461, 10476, 10479, 10480, 10481, 10483, 10487, 10501, 10503, 10504, 10505, 10514, 10516, 10517, 10532, 10536, 10538, 10541, 10545, 10549, 10554, 10555, 10556, 10557, 10560, 10562, 10563, 10566, 10569, 10571, 10572, 10575, 10578, 10580, 10581, 10584, 10587, 10589, 10590, 10593, 10597, 10598, 10599, 10603, 10604, 10607, 10609, 10611, 10612, 10613, 10614, 10615, 10616, 10617, 10618, 10620, 10621, 10622, 10623, 10624, 10625, 10626, 10627, 10628, 10629, 10632, 10636, 10637, 10638, 10639, 10640, 10641, 10642, 10643, 10644, 10645, 10646, 10647, 10648, 10649]

72.98%
[958, 1697, 1700, 1701, 1702, 2707, 3324, 3326, 3339, 4386, 7345, 8447, 10339, 10346, 10359, 10361, 10363, 10418, 10426, 10432, 10436, 10438, 10440, 10445, 10461, 10476, 10479, 10480, 10481, 10483, 10487, 10501, 10503, 10514, 10516, 10532, 10545, 10547, 10554, 10562, 10563, 10566, 10571, 10572, 10575, 10580, 10581, 10584, 10589, 10590, 10593, 10597, 10598, 10603, 10604, 10606, 10607, 10609, 10611, 10612, 10613, 10614, 10615, 10616, 10617, 10618, 10620, 10623, 10624, 10625, 10626, 10628, 10632, 10636, 10637, 10638, 10639, 10640, 10641, 10642, 10643, 10644, 10645, 10646, 10647, 10648, 10649]

[[_homogeneous, ‘class G‘]]

70

94.29%
[3232, 3236, 12148, 15095]

94.29%
[3995, 4040, 8704, 8719]

[_linear]

688

99.56%
[6169, 11995, 15046]

99.56%
[5502, 6169, 11995]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

31

100.00%

100.00%

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

102

99.02%
[14378]

100.00%

[[_homogeneous, ‘class A‘], _dAlembert]

150

99.33%
[11212]

100.00%

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

96

100.00%

100.00%

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

60

100.00%

100.00%

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

219

98.63%
[2085, 5761, 14384]

100.00%

[[_homogeneous, ‘class C‘], _dAlembert]

81

91.36%
[3000, 4260, 4278, 7102, 11240, 14439, 15129]

100.00%

[[_homogeneous, ‘class C‘], _Riccati]

24

100.00%

100.00%

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

75

100.00%

100.00%

[_Bernoulli]

117

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _Bernoulli]

10

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

48

100.00%

100.00%

[‘y=_G(x,y’)‘]

145

62.76%
[133, 485, 959, 961, 962, 964, 966, 968, 1703, 1706, 1707, 2026, 2316, 2319, 3363, 3368, 3384, 3463, 4011, 4216, 4261, 4287, 4299, 4951, 4995, 6549, 7063, 7253, 8411, 8416, 8419, 8457, 8706, 8731, 8795, 8796, 8841, 8845, 8866, 11219, 11224, 11404, 12214, 12220, 12239, 12636, 13289, 13348, 14046, 14133, 14296, 14313, 14441, 14941]

57.24%
[133, 485, 959, 961, 962, 964, 966, 968, 1703, 1706, 1707, 2026, 2063, 2316, 2319, 3090, 3363, 3368, 3382, 3384, 3395, 3463, 3872, 4011, 4216, 4287, 4298, 4914, 4951, 4995, 6549, 7063, 7253, 8411, 8416, 8419, 8457, 8706, 8731, 8787, 8795, 8796, 8841, 8845, 8848, 8866, 8878, 11224, 11404, 12214, 12218, 12220, 12239, 12636, 13289, 13348, 14133, 14296, 14313, 14441, 14941, 15059]

[[_1st_order, _with_linear_symmetries]]

104

91.35%
[3229, 3231, 4290, 4294, 5346, 6797, 6807, 11215, 15124]

99.04%
[8872]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

38

97.37%
[15074]

100.00%

[_exact, _rational]

43

97.67%
[119]

100.00%

[_exact]

98

93.88%
[3137, 14323, 14328, 15066, 15067, 15073]

97.96%
[14323, 14328]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

4

100.00%

100.00%

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4

100.00%

100.00%

[[_homogeneous, ‘class G‘], _exact, _rational]

11

81.82%
[146, 11610]

100.00%

[[_2nd_order, _missing_x]]

833

96.52%
[2307, 7411, 9934, 9935, 9936, 9938, 9939, 9941, 9959, 9960, 9962, 9967, 9985, 10031, 10033, 10156, 10159, 11589, 11590, 12570, 12571, 14516, 14517, 15204, 15444, 15446, 15449, 15453, 15459]

97.24%
[7411, 9934, 9935, 9938, 9939, 9941, 9959, 9960, 9962, 9967, 9985, 10031, 10032, 10033, 10159, 11589, 11590, 12570, 12571, 15444, 15446, 15449, 15453]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

121

97.52%
[12614, 13569, 13570]

97.52%
[12614, 13569, 13570]

[[_Emden, _Fowler]]

348

100.00%

97.41%
[2541, 4718, 5217, 5556, 5588, 5589, 6584, 6617, 12406]

[[_2nd_order, _exact, _linear, _homogeneous]]

235

99.57%
[12258]

98.30%
[5590, 6460, 6618, 12407]

[[_2nd_order, _missing_y]]

201

97.51%
[6856, 6858, 7212, 10150, 11331]

99.00%
[6443, 7305]

[[_2nd_order, _with_linear_symmetries]]

2852

94.71%
[1105, 5010, 5813, 5818, 6581, 7178, 7179, 7182, 7183, 7187, 7189, 7288, 7554, 7556, 7976, 7978, 9353, 9360, 9362, 9364, 9365, 9371, 9405, 9406, 9407, 9409, 9413, 9487, 9535, 9542, 9546, 9565, 9607, 9634, 9690, 9720, 9730, 9736, 9747, 9762, 9767, 9768, 9769, 9771, 9928, 9971, 9981, 9982, 9983, 9986, 9988, 9989, 9990, 9995, 9996, 10000, 10001, 10003, 10005, 10007, 10042, 10065, 10085, 10100, 10102, 10103, 10134, 10141, 10142, 10143, 10154, 10155, 10833, 10841, 10856, 10861, 10872, 10874, 10875, 10876, 10877, 10878, 10881, 10882, 10883, 10884, 10892, 10902, 10908, 10915, 10921, 10922, 10924, 10925, 10926, 10927, 10928, 10943, 10945, 10946, 10966, 10967, 10968, 10972, 11012, 11025, 11029, 11032, 11036, 11039, 11052, 11055, 11056, 11065, 11066, 11067, 11068, 11069, 11070, 11071, 11072, 11073, 11078, 11079, 11081, 11082, 11084, 11085, 11086, 11087, 11095, 11100, 11103, 11118, 11119, 11121, 11310, 11311, 11329, 12050, 12249, 12250, 12252, 12264, 12412, 14050, 14121, 14472, 14473, 15382, 15474]

95.58%
[1794, 1797, 1805, 2400, 2920, 4701, 4714, 5003, 5010, 5521, 5526, 5564, 5818, 6042, 6441, 6449, 6581, 6592, 7179, 7187, 7189, 7288, 9353, 9360, 9362, 9364, 9365, 9371, 9405, 9406, 9407, 9409, 9413, 9487, 9535, 9542, 9546, 9565, 9607, 9736, 9767, 9768, 9769, 9771, 9928, 9971, 9981, 9982, 9983, 9986, 9988, 9989, 9990, 9995, 9996, 10000, 10003, 10005, 10007, 10042, 10065, 10085, 10100, 10143, 10154, 10155, 10157, 10856, 10872, 10874, 10876, 10877, 10882, 10883, 10884, 10915, 10921, 10922, 10925, 10926, 10927, 10928, 10946, 10967, 10968, 10972, 11012, 11022, 11023, 11024, 11027, 11032, 11034, 11039, 11055, 11056, 11065, 11066, 11070, 11071, 11072, 11073, 11081, 11082, 11084, 11087, 11104, 11109, 11111, 11116, 11117, 11118, 11121, 11329, 11904, 11905, 12050, 12252, 12264, 12412, 14050, 14121, 14472, 14473, 14803, 15432]

[[_2nd_order, _linear, _nonhomogeneous]]

1111

98.47%
[1162, 1186, 7462, 9408, 12248, 12251, 12281, 12352, 12354, 12748, 12749, 14633, 14870, 15384, 15385, 15386, 15436]

97.66%
[1162, 1186, 4722, 4723, 5500, 5501, 5833, 6513, 7224, 7225, 7226, 7230, 7231, 7233, 7241, 7306, 7307, 9408, 12248, 12251, 12281, 12352, 12354, 12749, 14633, 14870]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

73

100.00%

100.00%

system of linear ODEs

828

96.50%
[6104, 6542, 6543, 10213, 10228, 10238, 10241, 10242, 10243, 10244, 10245, 10250, 10251, 10254, 10255, 10256, 10257, 10258, 10259, 10261, 12827, 12828, 12829, 12830, 12842, 14043, 15506, 15517, 15524]

96.74%
[6104, 6542, 6543, 6716, 6719, 10213, 10228, 10238, 10241, 10242, 10243, 10244, 10245, 10250, 10251, 10254, 10256, 10257, 10259, 10261, 12827, 12828, 12829, 12830, 12842, 14043, 15524]

[_Gegenbauer]

77

100.00%

100.00%

[[_high_order, _missing_x]]

216

100.00%

100.00%

[[_3rd_order, _missing_x]]

195

100.00%

100.00%

[[_3rd_order, _missing_y]]

97

100.00%

100.00%

[[_3rd_order, _exact, _linear, _homogeneous]]

15

100.00%

100.00%

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

76

94.74%
[10840, 10933, 11030, 11074]

98.68%
[6459]

[_Lienard]

59

100.00%

100.00%

[[_homogeneous, ‘class A‘], _rational, _Riccati]

31

100.00%

100.00%

[‘x=_G(y,y’)‘]

13

61.54%
[550, 2713, 6183, 8907, 13034]

61.54%
[550, 2713, 6183, 8907, 13034]

[[_Abel, ‘2nd type‘, ‘class B‘]]

15

26.67%
[553, 1046, 8586, 10667, 10670, 10690, 10691, 10692, 10712, 10725, 10730]

40.00%
[553, 1046, 8586, 10670, 10690, 10691, 10692, 10712, 10725]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

12

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

29

96.55%
[2031]

100.00%

[[_homogeneous, ‘class D‘], _rational]

3

100.00%

100.00%

[[_1st_order, _with_exponential_symmetries]]

9

100.00%

100.00%

[_rational]

111

82.88%
[1039, 1075, 1953, 3118, 3192, 3193, 4146, 4315, 6111, 8815, 8817, 8824, 8838, 9219, 9228, 11198, 11604, 14101, 14126]

76.58%
[1039, 1075, 1953, 3118, 3192, 3193, 3926, 4146, 4198, 4199, 4315, 6111, 8815, 8817, 8820, 8838, 9219, 9228, 9246, 9254, 11198, 11230, 11604, 12421, 14101, 14126]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

136

28.68%
[1069, 2990, 3092, 3776, 3783, 6185, 7316, 8570, 8573, 8589, 8601, 10653, 10654, 10661, 10662, 10664, 10666, 10669, 10671, 10673, 10674, 10676, 10677, 10678, 10679, 10680, 10683, 10684, 10685, 10687, 10688, 10689, 10696, 10697, 10698, 10699, 10700, 10701, 10704, 10705, 10706, 10707, 10708, 10709, 10710, 10711, 10713, 10714, 10715, 10716, 10717, 10718, 10719, 10731, 10748, 10749, 10752, 10755, 10756, 10757, 10758, 10759, 10760, 10761, 10762, 10764, 10765, 10766, 10767, 10768, 10769, 10770, 10771, 10772, 10773, 10774, 10775, 10776, 10777, 10778, 10779, 10780, 10781, 10782, 10783, 10784, 10785, 10786, 10787, 10788, 10789, 10790, 10791, 10792, 10793, 10823, 10824]

51.47%
[2990, 3092, 3776, 3783, 6185, 7316, 8570, 8573, 8589, 8601, 10661, 10664, 10669, 10676, 10677, 10678, 10679, 10680, 10687, 10688, 10697, 10699, 10700, 10704, 10705, 10708, 10709, 10710, 10711, 10713, 10715, 10716, 10717, 10718, 10719, 10748, 10749, 10755, 10757, 10758, 10759, 10760, 10761, 10762, 10764, 10766, 10767, 10769, 10770, 10771, 10772, 10774, 10775, 10777, 10778, 10779, 10781, 10782, 10783, 10784, 10785, 10786, 10787, 10791, 10792, 10823]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

4

100.00%

100.00%

[NONE]

86

37.21%
[710, 1041, 7110, 7214, 8393, 8424, 8538, 8703, 8910, 8911, 9170, 9172, 9918, 9921, 9922, 9926, 9929, 9931, 9932, 9940, 9942, 9946, 9947, 9948, 9951, 9957, 9965, 9966, 9968, 9972, 9998, 10008, 10016, 10025, 10027, 10052, 10055, 10057, 10058, 10061, 10062, 10074, 10080, 10112, 10124, 10125, 10138, 10174, 12238, 12241, 12243, 13529, 14051, 14626]

33.72%
[710, 6238, 7110, 7214, 8393, 8424, 8538, 8703, 8910, 8911, 9170, 9172, 9918, 9921, 9922, 9929, 9931, 9932, 9940, 9942, 9946, 9947, 9948, 9951, 9957, 9965, 9966, 9968, 9972, 9998, 10008, 10016, 10021, 10025, 10027, 10028, 10029, 10044, 10052, 10055, 10057, 10058, 10061, 10062, 10074, 10080, 10112, 10124, 10125, 10138, 10174, 12238, 12241, 12243, 13529, 14051, 14626]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

29

100.00%

96.55%
[1984]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

58

98.28%
[2083]

100.00%

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

21

100.00%

100.00%

[[_high_order, _with_linear_symmetries]]

57

87.72%
[813, 9865, 9866, 9867, 9868, 9895, 9913]

87.72%
[813, 9865, 9866, 9867, 9868, 9905, 9913]

[[_3rd_order, _with_linear_symmetries]]

158

88.61%
[5817, 9784, 9785, 9786, 9787, 9788, 9789, 9790, 9800, 9801, 9803, 9811, 9816, 9827, 9840, 9841, 9856, 13559]

89.24%
[5817, 9784, 9785, 9786, 9787, 9788, 9789, 9790, 9800, 9801, 9803, 9811, 9816, 9835, 9840, 9856, 13559]

[[_high_order, _linear, _nonhomogeneous]]

89

97.75%
[9875, 9904]

98.88%
[9904]

[[_1st_order, _with_linear_symmetries], _Clairaut]

76

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

52

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

79

98.73%
[1985]

98.73%
[1985]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

5

100.00%

100.00%

[[_Abel, ‘2nd type‘, ‘class A‘]]

34

14.71%
[3676, 3728, 4954, 8542, 8555, 10657, 10658, 10722, 10723, 10724, 10733, 10734, 10735, 10736, 10737, 10751, 10797, 10804, 10805, 10807, 10808, 10810, 10811, 10812, 10813, 10814, 10815, 10816, 10817]

35.29%
[3676, 3728, 4954, 8542, 8555, 10722, 10723, 10724, 10733, 10734, 10735, 10736, 10737, 10751, 10797, 10805, 10808, 10812, 10813, 10815, 10816, 10817]

[_rational, _Bernoulli]

46

100.00%

100.00%

[[_homogeneous, ‘class A‘]]

7

100.00%

100.00%

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

162

98.15%
[1941, 4451, 10819]

98.77%
[1935, 1938]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

21

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _Riccati]

10

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Riccati]

1

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

2

100.00%

100.00%

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17

100.00%

100.00%

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

6

100.00%

100.00%

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10

100.00%

100.00%

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

4

100.00%

100.00%

[_exact, _Bernoulli]

7

100.00%

100.00%

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

10

100.00%

100.00%

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

12

83.33%
[4917, 4962]

83.33%
[4917, 4962]

[[_homogeneous, ‘class G‘], _rational]

98

98.98%
[1986]

97.96%
[4163, 6820]

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2

100.00%

100.00%

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

14

100.00%

100.00%

[_rational, _Riccati]

102

95.10%
[10349, 10392, 10401, 10405, 10406]

98.04%
[10401, 10406]

[[_3rd_order, _linear, _nonhomogeneous]]

93

97.85%
[12223, 12227]

100.00%

[[_high_order, _missing_y]]

57

98.25%
[9909]

98.25%
[9909]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

6

100.00%

100.00%

[[_high_order, _exact, _linear, _nonhomogeneous]]

7

100.00%

100.00%

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

34

100.00%

100.00%

[_exact, [_Abel, ‘2nd type‘, ‘class A‘]]

2

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class A‘]]

2

100.00%

100.00%

[[_Riccati, _special]]

26

100.00%

100.00%

[_Abel]

30

66.67%
[1704, 3352, 8384, 8385, 8386, 8387, 12134, 12631, 12938, 13057]

66.67%
[1704, 3352, 8384, 8385, 8386, 8387, 12134, 12631, 12938, 13057]

[_Laguerre]

39

100.00%

100.00%

[_Laguerre, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4

100.00%

100.00%

[_Bessel]

20

100.00%

100.00%

[_rational, _Abel]

21

95.24%
[1897]

100.00%

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

3

100.00%

100.00%

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5

100.00%

100.00%

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

8

100.00%

100.00%

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

11

100.00%

100.00%

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6

100.00%

100.00%

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

36

100.00%

100.00%

[[_homogeneous, ‘class D‘], _Bernoulli]

6

100.00%

100.00%

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

11

100.00%

100.00%

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

7

100.00%

100.00%

[[_2nd_order, _quadrature]]

61

98.36%
[12198]

98.36%
[7304]

[[_high_order, _quadrature]]

11

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

78

89.74%
[2308, 2376, 4658, 6100, 6839, 6840, 9914, 15211]

97.44%
[2376, 15217]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

24

100.00%

100.00%

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

10

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

17

58.82%
[4668, 4839, 4840, 4841, 13523, 13524, 15210]

100.00%

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

29

93.10%
[2304, 13520]

93.10%
[2304, 2309]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

11

100.00%

100.00%

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

38

100.00%

97.37%
[10131]

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

5

100.00%

100.00%

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

13

100.00%

100.00%

[_dAlembert]

25

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _dAlembert]

64

82.81%
[2350, 4251, 4252, 4253, 4274, 4305, 6811, 6813, 6874, 6878, 7254]

100.00%

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

10

100.00%

100.00%

[[_homogeneous, ‘class G‘], _Clairaut]

3

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

17

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

1

100.00%

100.00%

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

6

100.00%

100.00%

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

11

100.00%

100.00%

[[_3rd_order, _exact, _nonlinear]]

3

66.67%
[10164]

66.67%
[10164]

[_Jacobi]

37

100.00%

100.00%

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

6

100.00%

100.00%

[[_3rd_order, _quadrature]]

8

100.00%

100.00%

[[_homogeneous, ‘class G‘], _exact]

3

100.00%

100.00%

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

12

100.00%

100.00%

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

1

100.00%

100.00%

[[_homogeneous, ‘class A‘], _exact, _rational, _Riccati]

1

100.00%

100.00%

[_erf]

4

100.00%

100.00%

[[_homogeneous, ‘class D‘]]

13

100.00%

100.00%

[_exact, _rational, _Riccati]

3

100.00%

100.00%

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

7

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational]

26

100.00%

100.00%

[[_homogeneous, ‘class D‘], _rational, _Riccati]

20

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _exact]

3

100.00%

100.00%

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

5

100.00%

100.00%

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

2

100.00%

100.00%

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2

100.00%

100.00%

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

40

27.50%
[3673, 5247, 8539, 8541, 10655, 10659, 10686, 10702, 10720, 10721, 10738, 10740, 10741, 10745, 10747, 10750, 10763, 10794, 10795, 10796, 10798, 10799, 10800, 10801, 10802, 10803, 10820, 10822, 11599]

45.00%
[3673, 5247, 8539, 8541, 10655, 10659, 10720, 10721, 10741, 10747, 10750, 10763, 10794, 10795, 10798, 10799, 10800, 10801, 10802, 10820, 10822, 11599]

[[_homogeneous, ‘class G‘], _dAlembert]

7

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

5

100.00%

100.00%

[[_homogeneous, ‘class G‘], _Abel]

4

100.00%

100.00%

[[_homogeneous, ‘class G‘], _Chini]

4

100.00%

100.00%

[_Chini]

4

0.00%
[3355, 3642, 8392, 14440]

0.00%
[3355, 3642, 8392, 14440]

[_rational, [_Riccati, _special]]

9

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

3

100.00%

100.00%

[[_homogeneous, ‘class D‘], _Riccati]

20

100.00%

100.00%

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

4

100.00%

100.00%

[[_homogeneous, ‘class G‘], _Riccati]

4

100.00%

100.00%

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

5

100.00%

100.00%

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

6

100.00%

100.00%

[_exact, _rational, _Bernoulli]

4

75.00%
[14327]

75.00%
[14327]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

5

100.00%

100.00%

[[_Abel, ‘2nd type‘, ‘class C‘]]

7

71.43%
[3843, 8605]

71.43%
[3843, 8605]

[[_homogeneous, ‘class C‘], _rational]

8

100.00%

100.00%

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2

100.00%

100.00%

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

17

100.00%

100.00%

unknown

8

75.00%
[8676, 10129]

62.50%
[8676, 10129, 10158]

[_rational, _dAlembert]

12

91.67%
[8766]

100.00%

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

9

100.00%

100.00%

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

6

100.00%

100.00%

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

15

100.00%

100.00%

[_Clairaut]

7

100.00%

85.71%
[4343]

[[_homogeneous, ‘class D‘], _exact, _rational, _Bernoulli]

1

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

9

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

10

90.00%
[12495]

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

3

66.67%
[6246]

100.00%

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

9

100.00%

100.00%

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3

100.00%

100.00%

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3

100.00%

100.00%

[[_homogeneous, ‘class G‘], _rational, _Abel]

2

100.00%

100.00%

[[_elliptic, _class_I]]

2

100.00%

100.00%

[[_elliptic, _class_II]]

2

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear]]

1

100.00%

100.00%

[_Hermite]

16

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

3

100.00%

100.00%

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

4

100.00%

100.00%

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

3

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _Chini]

2

100.00%

100.00%

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2

100.00%

100.00%

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

1

100.00%

100.00%

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

3

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

39

100.00%

92.31%
[9068, 9124, 9125]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

6

100.00%

83.33%
[15197]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]]

3

100.00%

100.00%

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

1

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

3

100.00%

100.00%

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

1

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

7

100.00%

100.00%

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

2

100.00%

100.00%

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]

2

100.00%

100.00%

[[_Bessel, _modified]]

2

100.00%

100.00%

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

12

8.33%
[7107, 7108, 9924, 9987, 10009, 10013, 10015, 10018, 10019, 12256, 13250]

25.00%
[7107, 9924, 9987, 10009, 10013, 10015, 10018, 10019, 13250]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

3

33.33%
[9949, 12269]

33.33%
[9949, 12269]

[_Liouville, [_2nd_order, _reducible, _mu_xy]]

3

100.00%

100.00%

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

8

100.00%

100.00%

[_Chini, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2

100.00%

100.00%

[[_1st_order, _with_exponential_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1

100.00%

100.00%

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1

100.00%

100.00%

[[_homogeneous, ‘class G‘], [_Abel, ‘2nd type‘, ‘class C‘]]

1

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

7

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

8

100.00%

100.00%

[[_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _Abel]

13

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

2

100.00%

100.00%

[[_homogeneous, ‘class D‘], _rational, _Abel]

3

100.00%

100.00%

[[_homogeneous, ‘class C‘], _rational, _Abel]

3

100.00%

100.00%

[_rational, [_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3

100.00%

100.00%

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

1

100.00%

100.00%

[[_homogeneous, ‘class C‘], _Abel]

3

100.00%

100.00%

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

6

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

5

100.00%

100.00%

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

10

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

2

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Abel]

2

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, _Abel]

1

100.00%

100.00%

[_Titchmarsh]

2

50.00%
[9349]

50.00%
[9349]

[_ellipsoidal]

2

100.00%

100.00%

[_Jacobi, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1

100.00%

100.00%

[_Halm]

4

100.00%

100.00%

[[_3rd_order, _fully, _exact, _linear]]

7

100.00%

100.00%

[[_high_order, _fully, _exact, _linear]]

1

100.00%

100.00%

[[_Painleve, ‘1st‘]]

1

0.00%
[9916]

0.00%
[9916]

[[_Painleve, ‘2nd‘]]

1

0.00%
[9919]

0.00%
[9919]

[[_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1

0.00%
[9950]

0.00%
[9950]

[[_2nd_order, _with_potential_symmetries]]

2

100.00%

100.00%

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

6

100.00%

100.00%

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

2

100.00%

100.00%

[[_2nd_order, _reducible, _mu_xy]]

3

66.67%
[10111]

66.67%
[10111]

[[_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

1

0.00%
[10036]

0.00%
[10036]

[[_Painleve, ‘4th‘]]

1

0.00%
[10060]

0.00%
[10060]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

3

100.00%

100.00%

[[_Painleve, ‘3rd‘]]

1

0.00%
[10084]

0.00%
[10084]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]]

1

100.00%

100.00%

[[_Painleve, ‘5th‘]]

1

0.00%
[10120]

0.00%
[10120]

[[_Painleve, ‘6th‘]]

1

0.00%
[10130]

0.00%
[10130]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

1

0.00%
[10139]

0.00%
[10139]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_poly_yn]]

1

0.00%
[10144]

0.00%
[10144]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1]]

1

0.00%
[10148]

0.00%
[10148]

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

7

28.57%
[10161, 10162, 10163, 10178, 13535]

28.57%
[10161, 10162, 10163, 10178, 13535]

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

1

100.00%

100.00%

[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

1

100.00%

100.00%

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

5

100.00%

100.00%

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]]

2

50.00%
[10173]

50.00%
[10173]

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]]

2

100.00%

100.00%

96

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class B‘]]

1

100.00%

100.00%

[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]]

1

100.00%

100.00%

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

1

100.00%

100.00%

[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]]

2

0.00%
[12226, 12240]

0.00%
[12226, 12240]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

2

100.00%

100.00%

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

1

100.00%

100.00%

[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]]

2

100.00%

100.00%

[[_1st_order, _with_exponential_symmetries], _exact]

1

100.00%

100.00%

[[_homogeneous, ‘class C‘], _exact, _rational, _dAlembert]

1

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

2

100.00%

100.00%

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

1

100.00%

100.00%

[[_high_order, _exact, _linear, _homogeneous]]

3

100.00%

100.00%

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1

100.00%

100.00%

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

1

100.00%

100.00%

[[_2nd_order, _missing_x], _Van_der_Pol]

1

100.00%

100.00%

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

1

100.00%

100.00%

[[_homogeneous, ‘class D‘], _exact, _rational]

1

100.00%

100.00%

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1

100.00%

100.00%

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_poly_yn]]

1

100.00%

100.00%

[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

1

0.00%
[15221]

100.00%

Performance using own ODE types classification

The types of the ODE’s are described in my ode solver page at ode types The following table gives count of the number of ODE’s for each ODE type, where the ODE type here is as classified by my own ode solver, and the percentage of solved ODE’s of that type for each CAS. It also gives a direct link to the ODE’s that failed if any.

Table 1.5: Percentage solved per own ODE type

Type of ODE

Count

Mathematica

Maple

quadrature

790

97.85%
[885, 4266, 4275, 12127, 12129, 12910, 12911, 12914, 12935, 12936, 12962, 12965, 12966, 12967, 14201, 15125, 15126]

99.87%
[11994]

linear

69

98.55%
[6169]

98.55%
[6169]

separable

126

100.00%

100.00%

homogeneous

70

98.57%
[5761]

100.00%

homogeneousTypeD2

5

100.00%

100.00%

exact

308

97.40%
[119, 146, 3137, 14323, 14328, 15066, 15067, 15073]

99.35%
[14323, 14328]

exactWithIntegrationFactor

135

99.26%
[8676]

96.30%
[1984, 2063, 3090, 8676, 15059]

exactByInspection

19

100.00%

94.74%
[3926]

bernoulli

25

100.00%

100.00%

riccati

478

76.99%
[958, 1697, 1698, 1700, 1701, 1702, 2707, 3304, 3324, 3326, 3339, 3639, 4386, 7345, 8447, 10339, 10346, 10349, 10359, 10363, 10392, 10401, 10405, 10406, 10415, 10432, 10436, 10440, 10445, 10452, 10461, 10476, 10479, 10480, 10481, 10483, 10487, 10501, 10503, 10504, 10505, 10514, 10516, 10517, 10532, 10536, 10538, 10541, 10545, 10549, 10554, 10555, 10556, 10557, 10560, 10562, 10563, 10566, 10569, 10571, 10572, 10575, 10578, 10580, 10581, 10584, 10587, 10589, 10590, 10593, 10597, 10598, 10599, 10603, 10604, 10607, 10609, 10611, 10612, 10613, 10614, 10615, 10616, 10617, 10618, 10620, 10621, 10622, 10623, 10624, 10625, 10626, 10627, 10628, 10629, 10632, 10636, 10637, 10638, 10639, 10640, 10641, 10642, 10643, 10644, 10645, 10646, 10647, 10648, 10649]

80.96%
[958, 1697, 1700, 1701, 1702, 2707, 3324, 3326, 3339, 4386, 7345, 8447, 9068, 9125, 10339, 10346, 10359, 10361, 10363, 10401, 10406, 10418, 10426, 10432, 10436, 10438, 10440, 10445, 10461, 10476, 10479, 10480, 10481, 10483, 10487, 10501, 10503, 10514, 10516, 10532, 10545, 10547, 10554, 10562, 10563, 10566, 10571, 10572, 10575, 10580, 10581, 10584, 10589, 10590, 10593, 10597, 10598, 10603, 10604, 10606, 10607, 10609, 10611, 10612, 10613, 10614, 10615, 10616, 10617, 10618, 10620, 10623, 10624, 10625, 10626, 10628, 10632, 10636, 10637, 10638, 10639, 10640, 10641, 10642, 10643, 10644, 10645, 10646, 10647, 10648, 10649]

clairaut

115

100.00%

99.13%
[4343]

dAlembert

253

92.89%
[2350, 3000, 4251, 4252, 4253, 4260, 4274, 4278, 4305, 6811, 6813, 6874, 6878, 7254, 8766, 11212, 11240, 15129]

100.00%

isobaric

13

100.00%

100.00%

polynomial

16

100.00%

100.00%

abelFirstKind

58

82.76%
[1704, 1897, 3352, 8384, 8385, 8387, 12134, 12631, 12938, 13057]

84.48%
[1704, 3352, 8384, 8385, 8387, 12134, 12631, 12938, 13057]

first order ode series method. Taylor series method

12

100.00%

100.00%

first order ode series method. Regular singular point

8

100.00%

100.00%

first order ode series method. Irregular singular point

3

100.00%

0.00%
[408, 409, 6418]

first_order_laplace

77

100.00%

100.00%

first_order_ode_lie_symmetry_calculated

498

95.98%
[1941, 1986, 2083, 3229, 3231, 3232, 3236, 4290, 4294, 4451, 5346, 6797, 6807, 7102, 10819, 11215, 12148, 14439, 15095, 15124]

97.59%
[3995, 4040, 4163, 4199, 6820, 8704, 8719, 8820, 8872, 9246, 11230, 12421]

system of linear ODEs

802

96.88%
[6104, 6542, 6543, 10228, 10238, 10241, 10242, 10243, 10244, 10245, 10254, 10255, 10256, 10257, 10258, 10259, 10261, 12827, 12828, 12829, 12830, 12842, 14043, 15506, 15524]

97.01%
[6104, 6542, 6543, 6716, 6719, 10228, 10238, 10241, 10242, 10243, 10244, 10245, 10254, 10256, 10257, 10259, 10261, 12827, 12828, 12829, 12830, 12842, 14043, 15524]

second_order_laplace

330

100.00%

99.70%
[6513]

reduction_of_order

160

98.12%
[12050, 14472, 14473]

98.12%
[12050, 14472, 14473]

second_order_linear_constant_coeff

2

100.00%

0.00%
[7306, 7307]

second_order_airy

15

100.00%

100.00%

second_order_change_of_variable_on_x_method_1

1

100.00%

100.00%

second_order_change_of_variable_on_x_method_2

5

100.00%

100.00%

second_order_change_of_variable_on_y_method_2

18

83.33%
[9747, 10927, 15436]

94.44%
[10927]

second_order_change_of_variable_on_y_method_1

4

100.00%

100.00%

second_order_integrable_as_is

12

83.33%
[10144, 12269]

83.33%
[10144, 12269]

second_order_ode_lagrange_adjoint_equation_method

9

88.89%
[10881]

100.00%

second_order_nonlinear_solved_by_mainardi_lioville_method

14

100.00%

100.00%

second_order_bessel_ode

136

91.18%
[7288, 9349, 9634, 9690, 10833, 10892, 10943, 10945, 11036, 11079, 12412, 12748]

97.79%
[7288, 9349, 12412]

second_order_bessel_ode_form_A

7

100.00%

100.00%

second_order_ode_missing_x

168

86.90%
[2307, 2308, 9934, 9935, 9936, 9939, 9941, 9959, 9960, 9962, 9985, 10031, 10033, 10156, 10159, 12495, 12570, 12571, 15211, 15444, 15446, 15449]

88.69%
[9934, 9935, 9939, 9941, 9959, 9960, 9962, 9985, 10031, 10032, 10033, 10131, 10159, 12570, 12571, 15217, 15444, 15446, 15449]

second_order_ode_missing_y

60

88.33%
[2304, 6856, 6858, 7212, 10150, 11331, 13520]

96.67%
[2304, 2309]

second order series method. Taylor series method

8

87.50%
[2376]

87.50%
[2376]

second order series method. Regular singular point. Difference not integer

266

100.00%

97.74%
[7224, 7225, 7226, 7230, 7231, 7233]

second order series method. Regular singular point. Repeated root

208

100.00%

99.52%
[7241]

second order series method. Regular singular point. Difference is integer

322

100.00%

99.69%
[5501]

second order series method. Irregular singular point

38

94.74%
[5010, 6581]

0.00%
[1794, 1797, 1805, 2400, 2541, 2920, 4701, 4714, 4718, 4722, 4723, 5003, 5010, 5217, 5500, 5521, 5526, 5556, 5564, 5588, 5589, 5590, 6042, 6441, 6443, 6449, 6459, 6460, 6581, 6584, 6592, 6617, 6618, 11904, 11905, 12406, 12407, 14803]

second order series method. Regular singular point. Complex roots

30

100.00%

100.00%

second_order_ode_high_degree

1

100.00%

100.00%

higher_order_linear_constant_coefficients_ODE

728

100.00%

100.00%

higher_order_ODE_non_constant_coefficients_of_type_Euler

96

100.00%

100.00%

higher_order_laplace

29

100.00%

100.00%

Performance using simplified ODE types classification

This chapter shows how each CAS performed based on the following basic differential equations types. A differential equation is classified as one of the following types.

  1. First order ode.
  2. Second and higher order ode.

For first order ode, the following are the main classifications used.

  1. First order ode \(f(x,y,y')=0\) which is linear in \(y'(x)\).
  2. First order ode not linear in \(y'(x)\) (such as d’Alembert, Clairaut). But it is important to note that in this case the ode is nonlinear in \(y'\) when written in the form \(y=g(x,y')\). For an example, lets look at this ode \[ y' = -\frac {x}{2}-1+\frac {\sqrt {x^{2}+4 x +4 y}}{2} \] Which is linear in \(y'\) as it stands. But in d’Alembert, Clairaut we always look at the ode in the form \(y=g(x,y')\). Hence, if we solve for \(y\) first, the above ode now becomes \begin {align*} y &= x y' + \left ( (y')^{2}+ 2 y' + 1 \right )\\ &= g(x,y') \end {align*}

    Now we see that \(g(x,y')\) is nonlinear in \(y'\). The above ode happens to be of type Clairaut.

For second order and higher order ode’s, further classification is

  1. Linear ode.
  2. non-linear ode.

Another classification for second order and higher order ode’s is

  1. Constant coefficients ode.
  2. Varying coefficients ode

Another classification for second order and higher order ode’s is

  1. Homogeneous ode. (the right side is zero).
  2. Non-homogeneous ode. (the right side is not zero).

All of the above can be combined to give this classification

  1. First order ode.

    1. First order ode linear in \(y'(x)\).
    2. First order ode not linear in \(y'(x)\) (such as d’Alembert, Clairaut).
  2. Second and higher order ode

    1. Linear second order ode.

      1. Linear homogeneous ode. (the right side is zero).
      2. Linear homogeneous and constant coefficients ode.
      3. Linear homogeneous and non-constant coefficients ode.
      4. Linear non-homogeneous ode. (the right side is not zero).
      5. Linear non-homogeneous and constant coefficients ode.
      6. Linear non-homogeneous and non-constant coefficients ode.
    2. Nonlinear second order ode.

      1. Nonlinear homogeneous ode.
      2. Nonlinear non-homogeneous ode.

For system of differential equation the following classification is used.

  1. System of first order odes.

    1. Linear system of odes.
    2. non-linear system of odes.
  2. System of second order odes.

    1. Linear system of odes.
    2. non-linear system of odes.

The following gives count of the number of ODE’s for each ODE type as specified above, and the percentage of solved ODE’s of that type for each CAS. It also gives a direct link to the ODE’s that failed if any.

  1. First order ode.

    Number of problems 6876.

    Solved by Mathematica: 93.22%

    Solved by Maple: 94.90%

    Links to problems not solved by Mathematica:

    [119, 133, 146, 485, 550, 553, 885, 958, 959, 961, 962, 964, 966, 968, 1039, 1041, 1046, 1069, 1075, 1697, 1698, 1700, 1701, 1702, 1703, 1704, 1706, 1707, 1897, 1941, 1953, 1985, 1986, 2026, 2031, 2083, 2085, 2316, 2319, 2350, 2707, 2713, 2990, 3000, 3022, 3092, 3118, 3137, 3192, 3193, 3229, 3231, 3232, 3236, 3304, 3324, 3326, 3339, 3352, 3355, 3363, 3368, 3384, 3463, 3639, 3642, 3673, 3676, 3728, 3776, 3783, 3843, 4011, 4146, 4216, 4251, 4252, 4253, 4260, 4261, 4266, 4274, 4275, 4278, 4287, 4290, 4294, 4299, 4305, 4315, 4386, 4451, 4917, 4951, 4954, 4962, 4995, 5247, 5346, 5761, 6111, 6169, 6183, 6185, 6264, 6549, 6797, 6807, 6811, 6813, 6874, 6878, 7063, 7102, 7253, 7254, 7316, 7345, 8384, 8385, 8387, 8392, 8393, 8411, 8416, 8419, 8424, 8447, 8457, 8538, 8539, 8541, 8542, 8555, 8570, 8573, 8586, 8589, 8601, 8605, 8667, 8676, 8703, 8706, 8731, 8766, 8795, 8796, 8815, 8817, 8824, 8838, 8841, 8845, 8866, 8907, 8910, 8911, 9170, 9172, 9219, 9228, 10339, 10346, 10349, 10359, 10363, 10392, 10401, 10405, 10406, 10415, 10432, 10436, 10440, 10445, 10452, 10461, 10476, 10479, 10480, 10481, 10483, 10487, 10501, 10503, 10504, 10505, 10514, 10516, 10517, 10532, 10536, 10538, 10541, 10545, 10549, 10554, 10555, 10556, 10557, 10560, 10562, 10563, 10566, 10569, 10571, 10572, 10575, 10578, 10580, 10581, 10584, 10587, 10589, 10590, 10593, 10597, 10598, 10599, 10603, 10604, 10607, 10609, 10611, 10612, 10613, 10614, 10615, 10616, 10617, 10618, 10620, 10621, 10622, 10623, 10624, 10625, 10626, 10627, 10628, 10629, 10632, 10636, 10637, 10638, 10639, 10640, 10641, 10642, 10643, 10644, 10645, 10646, 10647, 10648, 10649, 10653, 10654, 10655, 10657, 10658, 10659, 10661, 10662, 10664, 10666, 10667, 10669, 10670, 10671, 10673, 10674, 10676, 10677, 10678, 10679, 10680, 10683, 10684, 10685, 10686, 10687, 10688, 10689, 10690, 10691, 10692, 10696, 10697, 10698, 10699, 10700, 10701, 10702, 10704, 10705, 10706, 10707, 10708, 10709, 10710, 10711, 10712, 10713, 10714, 10715, 10716, 10717, 10718, 10719, 10720, 10721, 10722, 10723, 10724, 10730, 10731, 10733, 10734, 10735, 10736, 10737, 10738, 10740, 10741, 10745, 10747, 10748, 10749, 10750, 10751, 10752, 10755, 10756, 10757, 10758, 10759, 10760, 10761, 10762, 10763, 10764, 10765, 10766, 10767, 10768, 10769, 10770, 10771, 10772, 10773, 10774, 10775, 10776, 10777, 10778, 10779, 10780, 10781, 10782, 10783, 10784, 10785, 10786, 10787, 10788, 10789, 10790, 10791, 10792, 10793, 10794, 10795, 10796, 10797, 10798, 10799, 10800, 10801, 10802, 10803, 10804, 10805, 10807, 10808, 10810, 10811, 10812, 10813, 10814, 10815, 10816, 10817, 10819, 10820, 10822, 10823, 10824, 11198, 11212, 11215, 11219, 11224, 11240, 11404, 11415, 11599, 11604, 11610, 11995, 12127, 12129, 12134, 12148, 12214, 12220, 12239, 12631, 12636, 12910, 12911, 12914, 12935, 12936, 12938, 12962, 12965, 12966, 12967, 13034, 13057, 13289, 13348, 14046, 14101, 14126, 14133, 14201, 14296, 14313, 14323, 14327, 14328, 14378, 14384, 14439, 14440, 14441, 14941, 14980, 14999, 15000, 15001, 15002, 15006, 15046, 15066, 15067, 15073, 15074, 15095, 15124, 15125, 15126, 15129]

    Links to problems not solved by Maple:

    [133, 485, 550, 553, 958, 959, 961, 962, 964, 966, 968, 1039, 1046, 1075, 1697, 1700, 1701, 1702, 1703, 1704, 1706, 1707, 1935, 1938, 1953, 1984, 1985, 2026, 2063, 2316, 2319, 2707, 2713, 2990, 3090, 3092, 3118, 3192, 3193, 3324, 3326, 3339, 3352, 3355, 3363, 3368, 3382, 3384, 3395, 3463, 3642, 3673, 3676, 3728, 3776, 3783, 3843, 3872, 3926, 3995, 4011, 4040, 4146, 4163, 4198, 4199, 4216, 4287, 4298, 4315, 4343, 4386, 4914, 4917, 4951, 4954, 4962, 4995, 5247, 6111, 6169, 6183, 6185, 6264, 6549, 6820, 7063, 7253, 7316, 7345, 8384, 8385, 8387, 8392, 8393, 8411, 8416, 8419, 8424, 8447, 8457, 8538, 8539, 8541, 8542, 8555, 8570, 8573, 8586, 8589, 8601, 8605, 8676, 8703, 8704, 8706, 8719, 8731, 8787, 8795, 8796, 8815, 8817, 8820, 8838, 8841, 8845, 8848, 8866, 8872, 8878, 8907, 8910, 8911, 9068, 9124, 9125, 9170, 9172, 9219, 9228, 9246, 9254, 10339, 10346, 10359, 10361, 10363, 10401, 10406, 10418, 10426, 10432, 10436, 10438, 10440, 10445, 10461, 10476, 10479, 10480, 10481, 10483, 10487, 10501, 10503, 10514, 10516, 10532, 10545, 10547, 10554, 10562, 10563, 10566, 10571, 10572, 10575, 10580, 10581, 10584, 10589, 10590, 10593, 10597, 10598, 10603, 10604, 10606, 10607, 10609, 10611, 10612, 10613, 10614, 10615, 10616, 10617, 10618, 10620, 10623, 10624, 10625, 10626, 10628, 10632, 10636, 10637, 10638, 10639, 10640, 10641, 10642, 10643, 10644, 10645, 10646, 10647, 10648, 10649, 10655, 10659, 10661, 10664, 10669, 10670, 10676, 10677, 10678, 10679, 10680, 10687, 10688, 10690, 10691, 10692, 10697, 10699, 10700, 10704, 10705, 10708, 10709, 10710, 10711, 10712, 10713, 10715, 10716, 10717, 10718, 10719, 10720, 10721, 10722, 10723, 10724, 10733, 10734, 10735, 10736, 10737, 10741, 10747, 10748, 10749, 10750, 10751, 10755, 10757, 10758, 10759, 10760, 10761, 10762, 10763, 10764, 10766, 10767, 10769, 10770, 10771, 10772, 10774, 10775, 10777, 10778, 10779, 10781, 10782, 10783, 10784, 10785, 10786, 10787, 10791, 10792, 10794, 10795, 10797, 10798, 10799, 10800, 10801, 10802, 10805, 10808, 10812, 10813, 10815, 10816, 10817, 10820, 10822, 10823, 11198, 11224, 11230, 11404, 11415, 11518, 11599, 11604, 11994, 11995, 12134, 12214, 12218, 12220, 12239, 12421, 12631, 12636, 12938, 13034, 13057, 13289, 13348, 14101, 14126, 14133, 14296, 14313, 14323, 14327, 14328, 14440, 14441, 14941, 15001, 15059]

  2. Second order linear ODE.

    Number of problems 4610.

    Solved by Mathematica: 96.79%

    Solved by Maple: 97.83%

    Links to problems not solved by Mathematica:

    [1105, 1162, 1186, 5813, 5818, 7178, 7179, 7182, 7183, 7187, 7189, 7288, 7462, 7554, 7556, 7976, 7978, 9349, 9353, 9360, 9364, 9365, 9371, 9405, 9406, 9407, 9408, 9409, 9487, 9535, 9542, 9546, 9565, 9607, 9634, 9690, 9720, 9730, 9736, 9747, 9762, 9767, 9768, 9769, 9771, 10833, 10840, 10841, 10856, 10861, 10872, 10874, 10875, 10876, 10877, 10878, 10881, 10882, 10883, 10884, 10892, 10902, 10908, 10915, 10921, 10922, 10924, 10925, 10926, 10927, 10928, 10933, 10943, 10945, 10946, 10966, 10967, 10968, 10972, 11012, 11025, 11029, 11030, 11032, 11036, 11039, 11052, 11055, 11056, 11065, 11066, 11067, 11068, 11069, 11070, 11071, 11072, 11073, 11074, 11078, 11079, 11081, 11082, 11084, 11085, 11086, 11087, 11095, 11100, 11103, 11118, 11119, 11121, 11310, 11311, 11329, 11589, 11590, 12050, 12198, 12248, 12249, 12250, 12251, 12252, 12258, 12264, 12281, 12352, 12354, 12412, 12614, 12748, 12749, 13569, 13570, 14121, 14472, 14473, 14633, 14870, 15382, 15384, 15385, 15386, 15436, 15453, 15459]

    Links to problems not solved by Maple:

    [1162, 1186, 5818, 5833, 6513, 7179, 7187, 7189, 7288, 9349, 9353, 9360, 9364, 9365, 9371, 9405, 9406, 9407, 9408, 9409, 9487, 9535, 9542, 9546, 9565, 9607, 9736, 9767, 9768, 9769, 9771, 10856, 10872, 10874, 10876, 10877, 10882, 10883, 10884, 10915, 10921, 10922, 10925, 10926, 10927, 10928, 10946, 10967, 10968, 10972, 11012, 11022, 11023, 11024, 11027, 11032, 11034, 11039, 11055, 11056, 11065, 11066, 11070, 11071, 11072, 11073, 11081, 11082, 11084, 11087, 11104, 11109, 11111, 11116, 11117, 11118, 11121, 11329, 11589, 11590, 12050, 12248, 12251, 12252, 12264, 12281, 12352, 12354, 12412, 12614, 12749, 13569, 13570, 14121, 14472, 14473, 14633, 14870, 15432, 15453]

  3. Second order ode.

    Number of problems 5160.

    Solved by Mathematica: 94.28%

    Solved by Maple: 95.72%

    Links to problems not solved by Mathematica:

    [710, 1105, 1162, 1186, 2304, 2307, 2308, 4658, 4668, 4839, 4840, 4841, 5813, 5818, 6100, 6246, 6839, 6840, 6856, 6858, 7107, 7108, 7110, 7178, 7179, 7182, 7183, 7187, 7189, 7212, 7214, 7288, 7411, 7462, 7554, 7556, 7976, 7978, 8386, 9349, 9353, 9360, 9364, 9365, 9371, 9405, 9406, 9407, 9408, 9409, 9487, 9535, 9542, 9546, 9565, 9607, 9634, 9690, 9720, 9730, 9736, 9747, 9762, 9767, 9768, 9769, 9771, 9914, 9916, 9918, 9919, 9921, 9922, 9924, 9926, 9928, 9929, 9931, 9932, 9934, 9935, 9936, 9938, 9939, 9940, 9941, 9942, 9946, 9947, 9948, 9949, 9950, 9951, 9957, 9959, 9960, 9962, 9965, 9966, 9967, 9968, 9971, 9972, 9981, 9982, 9983, 9985, 9986, 9987, 9988, 9989, 9990, 9995, 9996, 9998, 10000, 10001, 10003, 10005, 10007, 10008, 10009, 10013, 10015, 10016, 10018, 10019, 10025, 10027, 10031, 10033, 10036, 10042, 10052, 10055, 10057, 10058, 10060, 10061, 10062, 10065, 10074, 10080, 10084, 10085, 10100, 10102, 10103, 10111, 10112, 10120, 10124, 10125, 10129, 10130, 10134, 10138, 10139, 10141, 10142, 10143, 10144, 10148, 10150, 10154, 10155, 10156, 10159, 10725, 10833, 10840, 10841, 10856, 10861, 10872, 10874, 10875, 10876, 10877, 10878, 10881, 10882, 10883, 10884, 10892, 10902, 10908, 10915, 10921, 10922, 10924, 10925, 10926, 10927, 10928, 10933, 10943, 10945, 10946, 10966, 10967, 10968, 10972, 11012, 11025, 11029, 11030, 11032, 11036, 11039, 11052, 11055, 11056, 11065, 11066, 11067, 11068, 11069, 11070, 11071, 11072, 11073, 11074, 11078, 11079, 11081, 11082, 11084, 11085, 11086, 11087, 11095, 11100, 11103, 11118, 11119, 11121, 11310, 11311, 11329, 11331, 11589, 11590, 12050, 12198, 12241, 12248, 12249, 12250, 12251, 12252, 12256, 12258, 12264, 12269, 12281, 12352, 12354, 12412, 12495, 12570, 12571, 12614, 12748, 12749, 13250, 13520, 13523, 13524, 13529, 13569, 13570, 14050, 14051, 14121, 14472, 14473, 14516, 14517, 14626, 14633, 14870, 15204, 15210, 15211, 15382, 15384, 15385, 15386, 15436, 15444, 15446, 15449, 15453, 15459]

    Links to problems not solved by Maple:

    [710, 1162, 1186, 2304, 2309, 5818, 5833, 6238, 6513, 7107, 7110, 7179, 7187, 7189, 7214, 7288, 7411, 8386, 9349, 9353, 9360, 9364, 9365, 9371, 9405, 9406, 9407, 9408, 9409, 9487, 9535, 9542, 9546, 9565, 9607, 9736, 9767, 9768, 9769, 9771, 9916, 9918, 9919, 9921, 9922, 9924, 9928, 9929, 9931, 9932, 9934, 9935, 9938, 9939, 9940, 9941, 9942, 9946, 9947, 9948, 9949, 9950, 9951, 9957, 9959, 9960, 9962, 9965, 9966, 9967, 9968, 9971, 9972, 9981, 9982, 9983, 9985, 9986, 9987, 9988, 9989, 9990, 9995, 9996, 9998, 10000, 10003, 10005, 10007, 10008, 10009, 10013, 10015, 10016, 10018, 10019, 10021, 10025, 10027, 10028, 10029, 10031, 10032, 10033, 10036, 10042, 10044, 10052, 10055, 10057, 10058, 10060, 10061, 10062, 10065, 10074, 10080, 10084, 10085, 10100, 10111, 10112, 10120, 10124, 10125, 10129, 10130, 10131, 10138, 10139, 10143, 10144, 10148, 10154, 10155, 10157, 10158, 10159, 10725, 10856, 10872, 10874, 10876, 10877, 10882, 10883, 10884, 10915, 10921, 10922, 10925, 10926, 10927, 10928, 10946, 10967, 10968, 10972, 11012, 11022, 11023, 11024, 11027, 11032, 11034, 11039, 11055, 11056, 11065, 11066, 11070, 11071, 11072, 11073, 11081, 11082, 11084, 11087, 11104, 11109, 11111, 11116, 11117, 11118, 11121, 11329, 11589, 11590, 12050, 12241, 12248, 12251, 12252, 12264, 12269, 12281, 12352, 12354, 12412, 12570, 12571, 12614, 12749, 13250, 13529, 13569, 13570, 14050, 14051, 14121, 14472, 14473, 14626, 14633, 14870, 15217, 15432, 15444, 15446, 15449, 15453]

  4. Second ODE homogeneous ODE.

    Number of problems 3169.

    Solved by Mathematica: 92.84%

    Solved by Maple: 94.79%

    Links to problems not solved by Mathematica:

    [1105, 2304, 2307, 2308, 4658, 4668, 4839, 4840, 4841, 5813, 5818, 6100, 6246, 6839, 6840, 6858, 7214, 7288, 7411, 7554, 7556, 7976, 7978, 9349, 9353, 9360, 9364, 9365, 9371, 9405, 9406, 9407, 9409, 9487, 9535, 9542, 9546, 9565, 9607, 9634, 9690, 9720, 9730, 9736, 9747, 9762, 9767, 9768, 9769, 9771, 9914, 9924, 9926, 9928, 9929, 9934, 9935, 9936, 9938, 9939, 9940, 9942, 9946, 9948, 9949, 9957, 9959, 9960, 9962, 9965, 9966, 9967, 9968, 9971, 9972, 9981, 9982, 9983, 9985, 9986, 9987, 9988, 9989, 9990, 9995, 9996, 9998, 10001, 10003, 10009, 10013, 10015, 10016, 10025, 10027, 10031, 10033, 10036, 10042, 10055, 10058, 10061, 10065, 10074, 10080, 10084, 10085, 10100, 10111, 10112, 10120, 10129, 10130, 10134, 10138, 10139, 10141, 10142, 10143, 10144, 10150, 10154, 10156, 10159, 10833, 10840, 10841, 10856, 10861, 10872, 10874, 10875, 10876, 10877, 10878, 10881, 10882, 10883, 10884, 10892, 10902, 10908, 10915, 10921, 10922, 10924, 10925, 10926, 10927, 10928, 10933, 10943, 10945, 10946, 10966, 10967, 10968, 10972, 11012, 11025, 11029, 11030, 11032, 11036, 11039, 11052, 11055, 11056, 11065, 11066, 11067, 11068, 11069, 11070, 11071, 11072, 11073, 11074, 11078, 11079, 11081, 11082, 11084, 11085, 11086, 11087, 11095, 11100, 11103, 11118, 11119, 11121, 11310, 11311, 11329, 11331, 11589, 11590, 12050, 12241, 12249, 12250, 12256, 12258, 12264, 12412, 12495, 12570, 12571, 12614, 13520, 13523, 13524, 13529, 13569, 13570, 14472, 14473, 14516, 14517, 15204, 15210, 15211, 15444, 15446, 15449, 15453]

    Links to problems not solved by Maple:

    [2304, 2309, 5818, 6238, 7214, 7288, 7411, 9349, 9353, 9360, 9364, 9365, 9371, 9405, 9406, 9407, 9409, 9487, 9535, 9542, 9546, 9565, 9607, 9736, 9767, 9768, 9769, 9771, 9924, 9928, 9929, 9934, 9935, 9938, 9939, 9940, 9942, 9946, 9948, 9949, 9957, 9959, 9960, 9962, 9965, 9966, 9967, 9968, 9971, 9972, 9981, 9982, 9983, 9985, 9986, 9987, 9988, 9989, 9990, 9995, 9996, 9998, 10003, 10009, 10013, 10015, 10016, 10025, 10027, 10028, 10029, 10031, 10032, 10033, 10036, 10042, 10044, 10055, 10058, 10061, 10065, 10074, 10080, 10084, 10085, 10100, 10111, 10112, 10120, 10129, 10130, 10131, 10138, 10139, 10143, 10144, 10154, 10157, 10158, 10159, 10856, 10872, 10874, 10876, 10877, 10882, 10883, 10884, 10915, 10921, 10922, 10925, 10926, 10927, 10928, 10946, 10967, 10968, 10972, 11012, 11022, 11023, 11024, 11027, 11032, 11034, 11039, 11055, 11056, 11065, 11066, 11070, 11071, 11072, 11073, 11081, 11082, 11084, 11087, 11104, 11109, 11111, 11116, 11117, 11118, 11121, 11329, 11589, 11590, 12050, 12241, 12264, 12412, 12570, 12571, 12614, 13529, 13569, 13570, 14472, 14473, 15444, 15446, 15449, 15453]

  5. Second ODE non-homogeneous ODE.

    Number of problems 1991.

    Solved by Mathematica: 96.58%

    Solved by Maple: 97.19%

    Links to problems not solved by Mathematica:

    [710, 1162, 1186, 6856, 7107, 7108, 7110, 7178, 7179, 7182, 7183, 7187, 7189, 7212, 7462, 8386, 9408, 9916, 9918, 9919, 9921, 9922, 9931, 9932, 9941, 9947, 9950, 9951, 10000, 10005, 10007, 10008, 10018, 10019, 10052, 10057, 10060, 10062, 10102, 10103, 10124, 10125, 10148, 10155, 10725, 12198, 12248, 12251, 12252, 12269, 12281, 12352, 12354, 12748, 12749, 13250, 14050, 14051, 14121, 14626, 14633, 14870, 15382, 15384, 15385, 15386, 15436, 15459]

    Links to problems not solved by Maple:

    [710, 1162, 1186, 5833, 6513, 7107, 7110, 7179, 7187, 7189, 8386, 9408, 9916, 9918, 9919, 9921, 9922, 9931, 9932, 9941, 9947, 9950, 9951, 10000, 10005, 10007, 10008, 10018, 10019, 10021, 10052, 10057, 10060, 10062, 10124, 10125, 10148, 10155, 10725, 12248, 12251, 12252, 12269, 12281, 12352, 12354, 12749, 13250, 14050, 14051, 14121, 14626, 14633, 14870, 15217, 15432]

  6. Second order non-linear ODE.

    Number of problems 550.

    Solved by Mathematica: 73.27%

    Solved by Maple: 78.00%

    Links to problems not solved by Mathematica:

    [710, 2304, 2307, 2308, 4658, 4668, 4839, 4840, 4841, 6100, 6246, 6839, 6840, 6856, 6858, 7107, 7108, 7110, 7212, 7214, 7411, 8386, 9914, 9916, 9918, 9919, 9921, 9922, 9924, 9926, 9928, 9929, 9931, 9932, 9934, 9935, 9936, 9938, 9939, 9940, 9941, 9942, 9946, 9947, 9948, 9949, 9950, 9951, 9957, 9959, 9960, 9962, 9965, 9966, 9967, 9968, 9971, 9972, 9981, 9982, 9983, 9985, 9986, 9987, 9988, 9989, 9990, 9995, 9996, 9998, 10000, 10001, 10003, 10005, 10007, 10008, 10009, 10013, 10015, 10016, 10018, 10019, 10025, 10027, 10031, 10033, 10036, 10042, 10052, 10055, 10057, 10058, 10060, 10061, 10062, 10065, 10074, 10080, 10084, 10085, 10100, 10102, 10103, 10111, 10112, 10120, 10124, 10125, 10129, 10130, 10134, 10138, 10139, 10141, 10142, 10143, 10144, 10148, 10150, 10154, 10155, 10156, 10159, 10725, 11331, 12241, 12256, 12269, 12495, 12570, 12571, 13250, 13520, 13523, 13524, 13529, 14050, 14051, 14516, 14517, 14626, 15204, 15210, 15211, 15444, 15446, 15449]

    Links to problems not solved by Maple:

    [710, 2304, 2309, 6238, 7107, 7110, 7214, 7411, 8386, 9916, 9918, 9919, 9921, 9922, 9924, 9928, 9929, 9931, 9932, 9934, 9935, 9938, 9939, 9940, 9941, 9942, 9946, 9947, 9948, 9949, 9950, 9951, 9957, 9959, 9960, 9962, 9965, 9966, 9967, 9968, 9971, 9972, 9981, 9982, 9983, 9985, 9986, 9987, 9988, 9989, 9990, 9995, 9996, 9998, 10000, 10003, 10005, 10007, 10008, 10009, 10013, 10015, 10016, 10018, 10019, 10021, 10025, 10027, 10028, 10029, 10031, 10032, 10033, 10036, 10042, 10044, 10052, 10055, 10057, 10058, 10060, 10061, 10062, 10065, 10074, 10080, 10084, 10085, 10100, 10111, 10112, 10120, 10124, 10125, 10129, 10130, 10131, 10138, 10139, 10143, 10144, 10148, 10154, 10155, 10157, 10158, 10159, 10725, 12241, 12269, 12570, 12571, 13250, 13529, 14050, 14051, 14626, 15217, 15444, 15446, 15449]

  7. Solved using series method.

    Number of problems 1555.

    Solved by Mathematica: 99.74%

    Solved by Maple: 96.27%

    Links to problems not solved by Mathematica:

    [2376, 5010, 6581, 15474]

    Links to problems not solved by Maple:

    [408, 409, 1794, 1797, 1805, 2376, 2400, 2541, 2920, 4701, 4714, 4718, 4722, 4723, 5003, 5010, 5217, 5500, 5501, 5502, 5521, 5526, 5556, 5564, 5588, 5589, 5590, 6042, 6418, 6441, 6443, 6449, 6459, 6460, 6581, 6584, 6592, 6617, 6618, 7224, 7225, 7226, 7230, 7231, 7233, 7241, 7300, 7301, 7303, 7304, 7305, 7306, 7307, 11904, 11905, 12406, 12407, 14803]

  8. Third and higher order ode.

    Number of problems 1054.

    Solved by Mathematica: 95.73%

    Solved by Maple: 96.11%

    Links to problems not solved by Mathematica:

    [813, 5817, 9362, 9413, 9784, 9785, 9786, 9787, 9788, 9789, 9790, 9800, 9801, 9803, 9811, 9816, 9827, 9840, 9841, 9856, 9865, 9866, 9867, 9868, 9875, 9895, 9904, 9909, 9913, 10161, 10162, 10163, 10164, 10173, 10174, 10178, 12223, 12226, 12227, 12238, 12240, 12243, 13535, 13559, 15221]

    Links to problems not solved by Maple:

    [813, 5817, 9362, 9413, 9784, 9785, 9786, 9787, 9788, 9789, 9790, 9800, 9801, 9803, 9811, 9816, 9835, 9840, 9856, 9865, 9866, 9867, 9868, 9904, 9905, 9909, 9913, 10161, 10162, 10163, 10164, 10173, 10174, 10178, 12226, 12238, 12240, 12243, 13535, 13559, 15197]

  9. First order ode linear in derivative.

    Number of problems 5933.

    Solved by Mathematica: 93.22%

    Solved by Maple: 94.77%

    Links to problems not solved by Mathematica:

    [119, 133, 146, 485, 550, 553, 885, 958, 959, 961, 962, 964, 966, 968, 1039, 1041, 1046, 1069, 1075, 1697, 1698, 1700, 1701, 1702, 1703, 1704, 1706, 1707, 1897, 1941, 1953, 1985, 1986, 2026, 2031, 2083, 2085, 2707, 2713, 2990, 3022, 3092, 3118, 3137, 3192, 3193, 3304, 3324, 3326, 3339, 3352, 3355, 3363, 3368, 3384, 3463, 3639, 3642, 3673, 3676, 3728, 3776, 3783, 3843, 4386, 4451, 4917, 4951, 4954, 4962, 4995, 5247, 5761, 6111, 6169, 6183, 6185, 6264, 6549, 7063, 7102, 7316, 7345, 8384, 8385, 8387, 8392, 8393, 8411, 8416, 8419, 8424, 8447, 8457, 8538, 8539, 8541, 8542, 8555, 8570, 8573, 8586, 8589, 8601, 8605, 8667, 8676, 8703, 9170, 9172, 9219, 9228, 10339, 10346, 10349, 10359, 10363, 10392, 10401, 10405, 10406, 10415, 10432, 10436, 10440, 10445, 10452, 10461, 10476, 10479, 10480, 10481, 10483, 10487, 10501, 10503, 10504, 10505, 10514, 10516, 10517, 10532, 10536, 10538, 10541, 10545, 10549, 10554, 10555, 10556, 10557, 10560, 10562, 10563, 10566, 10569, 10571, 10572, 10575, 10578, 10580, 10581, 10584, 10587, 10589, 10590, 10593, 10597, 10598, 10599, 10603, 10604, 10607, 10609, 10611, 10612, 10613, 10614, 10615, 10616, 10617, 10618, 10620, 10621, 10622, 10623, 10624, 10625, 10626, 10627, 10628, 10629, 10632, 10636, 10637, 10638, 10639, 10640, 10641, 10642, 10643, 10644, 10645, 10646, 10647, 10648, 10649, 10653, 10654, 10655, 10657, 10658, 10659, 10661, 10662, 10664, 10666, 10667, 10669, 10670, 10671, 10673, 10674, 10676, 10677, 10678, 10679, 10680, 10683, 10684, 10685, 10686, 10687, 10688, 10689, 10690, 10691, 10692, 10696, 10697, 10698, 10699, 10700, 10701, 10702, 10704, 10705, 10706, 10707, 10708, 10709, 10710, 10711, 10712, 10713, 10714, 10715, 10716, 10717, 10718, 10719, 10720, 10721, 10722, 10723, 10724, 10730, 10731, 10733, 10734, 10735, 10736, 10737, 10738, 10740, 10741, 10745, 10747, 10748, 10749, 10750, 10751, 10752, 10755, 10756, 10757, 10758, 10759, 10760, 10761, 10762, 10763, 10764, 10765, 10766, 10767, 10768, 10769, 10770, 10771, 10772, 10773, 10774, 10775, 10776, 10777, 10778, 10779, 10780, 10781, 10782, 10783, 10784, 10785, 10786, 10787, 10788, 10789, 10790, 10791, 10792, 10793, 10794, 10795, 10796, 10797, 10798, 10799, 10800, 10801, 10802, 10803, 10804, 10805, 10807, 10808, 10810, 10811, 10812, 10813, 10814, 10815, 10816, 10817, 10819, 10820, 10822, 10823, 10824, 11198, 11415, 11599, 11604, 11610, 11995, 12134, 12214, 12220, 12631, 12636, 12910, 12911, 12914, 12935, 12936, 12938, 12962, 12965, 12966, 12967, 13034, 13057, 13289, 13348, 14046, 14101, 14126, 14133, 14201, 14296, 14313, 14323, 14327, 14328, 14378, 14384, 14439, 14440, 14441, 14941, 14980, 14999, 15000, 15001, 15002, 15006, 15046, 15066, 15067, 15073, 15074, 15126]

    Links to problems not solved by Maple:

    [133, 485, 550, 553, 958, 959, 961, 962, 964, 966, 968, 1039, 1046, 1075, 1697, 1700, 1701, 1702, 1703, 1704, 1706, 1707, 1935, 1938, 1953, 1984, 1985, 2026, 2063, 2707, 2713, 2990, 3090, 3092, 3118, 3192, 3193, 3324, 3326, 3339, 3352, 3355, 3363, 3368, 3382, 3384, 3395, 3463, 3642, 3673, 3676, 3728, 3776, 3783, 3843, 3872, 3926, 4386, 4914, 4917, 4951, 4954, 4962, 4995, 5247, 6111, 6169, 6183, 6185, 6264, 6549, 7063, 7316, 7345, 8384, 8385, 8387, 8392, 8393, 8411, 8416, 8419, 8424, 8447, 8457, 8538, 8539, 8541, 8542, 8555, 8570, 8573, 8586, 8589, 8601, 8605, 8676, 8703, 9068, 9124, 9125, 9170, 9172, 9219, 9228, 9246, 9254, 10339, 10346, 10359, 10361, 10363, 10401, 10406, 10418, 10426, 10432, 10436, 10438, 10440, 10445, 10461, 10476, 10479, 10480, 10481, 10483, 10487, 10501, 10503, 10514, 10516, 10532, 10545, 10547, 10554, 10562, 10563, 10566, 10571, 10572, 10575, 10580, 10581, 10584, 10589, 10590, 10593, 10597, 10598, 10603, 10604, 10606, 10607, 10609, 10611, 10612, 10613, 10614, 10615, 10616, 10617, 10618, 10620, 10623, 10624, 10625, 10626, 10628, 10632, 10636, 10637, 10638, 10639, 10640, 10641, 10642, 10643, 10644, 10645, 10646, 10647, 10648, 10649, 10655, 10659, 10661, 10664, 10669, 10670, 10676, 10677, 10678, 10679, 10680, 10687, 10688, 10690, 10691, 10692, 10697, 10699, 10700, 10704, 10705, 10708, 10709, 10710, 10711, 10712, 10713, 10715, 10716, 10717, 10718, 10719, 10720, 10721, 10722, 10723, 10724, 10733, 10734, 10735, 10736, 10737, 10741, 10747, 10748, 10749, 10750, 10751, 10755, 10757, 10758, 10759, 10760, 10761, 10762, 10763, 10764, 10766, 10767, 10769, 10770, 10771, 10772, 10774, 10775, 10777, 10778, 10779, 10781, 10782, 10783, 10784, 10785, 10786, 10787, 10791, 10792, 10794, 10795, 10797, 10798, 10799, 10800, 10801, 10802, 10805, 10808, 10812, 10813, 10815, 10816, 10817, 10820, 10822, 10823, 11198, 11415, 11518, 11599, 11604, 11994, 11995, 12134, 12214, 12218, 12220, 12631, 12636, 12938, 13034, 13057, 13289, 13348, 14101, 14126, 14133, 14296, 14313, 14323, 14327, 14328, 14440, 14441, 14941, 15001, 15059]

  10. System of differential equations.

    Number of problems 827.

    Solved by Mathematica: 96.49%

    Solved by Maple: 96.74%

    Links to problems not solved by Mathematica:

    [6104, 6542, 6543, 10213, 10228, 10238, 10241, 10242, 10243, 10244, 10245, 10250, 10251, 10254, 10255, 10256, 10257, 10258, 10259, 10261, 12827, 12828, 12829, 12830, 12842, 14043, 15506, 15517, 15524]

    Links to problems not solved by Maple:

    [6104, 6542, 6543, 6716, 6719, 10213, 10228, 10238, 10241, 10242, 10243, 10244, 10245, 10250, 10251, 10254, 10256, 10257, 10259, 10261, 12827, 12828, 12829, 12830, 12842, 14043, 15524]

  11. Third and higher order homogeneous ODE.

    Number of problems 599.

    Solved by Mathematica: 94.32%

    Solved by Maple: 94.49%

    Links to problems not solved by Mathematica:

    [813, 5817, 9362, 9413, 9784, 9785, 9786, 9787, 9788, 9789, 9790, 9800, 9801, 9803, 9811, 9816, 9827, 9840, 9841, 9856, 9865, 9866, 9867, 9868, 9895, 9913, 10162, 10163, 10173, 10174, 10178, 13535, 13559, 15221]

    Links to problems not solved by Maple:

    [813, 5817, 9362, 9413, 9784, 9785, 9786, 9787, 9788, 9789, 9790, 9800, 9801, 9803, 9811, 9816, 9835, 9840, 9856, 9865, 9866, 9867, 9868, 9905, 9913, 10162, 10163, 10173, 10174, 10178, 13535, 13559, 15197]

  12. Third and higher order linear ODE.

    Number of problems 1016.

    Solved by Mathematica: 96.85%

    Solved by Maple: 97.24%

    Links to problems not solved by Mathematica:

    [813, 5817, 9362, 9413, 9784, 9785, 9786, 9787, 9788, 9789, 9790, 9800, 9801, 9803, 9811, 9816, 9827, 9840, 9841, 9856, 9865, 9866, 9867, 9868, 9875, 9895, 9904, 9909, 9913, 12223, 12227, 13559]

    Links to problems not solved by Maple:

    [813, 5817, 9362, 9413, 9784, 9785, 9786, 9787, 9788, 9789, 9790, 9800, 9801, 9803, 9811, 9816, 9835, 9840, 9856, 9865, 9866, 9867, 9868, 9904, 9905, 9909, 9913, 13559]

  13. Third and higher order non-linear ODE.

    Number of problems 38.

    Solved by Mathematica: 65.79%

    Solved by Maple: 65.79%

    Links to problems not solved by Mathematica:

    [10161, 10162, 10163, 10164, 10173, 10174, 10178, 12226, 12238, 12240, 12243, 13535, 15221]

    Links to problems not solved by Maple:

    [10161, 10162, 10163, 10164, 10173, 10174, 10178, 12226, 12238, 12240, 12243, 13535, 15197]

  14. First order ode non-linear in derivative.

    Number of problems 943.

    Solved by Mathematica: 93.21%

    Solved by Maple: 95.65%

    Links to problems not solved by Mathematica:

    [2316, 2319, 2350, 3000, 3229, 3231, 3232, 3236, 4011, 4146, 4216, 4251, 4252, 4253, 4260, 4261, 4266, 4274, 4275, 4278, 4287, 4290, 4294, 4299, 4305, 4315, 5346, 6797, 6807, 6811, 6813, 6874, 6878, 7253, 7254, 8706, 8731, 8766, 8795, 8796, 8815, 8817, 8824, 8838, 8841, 8845, 8866, 8907, 8910, 8911, 11212, 11215, 11219, 11224, 11240, 11404, 12127, 12129, 12148, 12239, 15095, 15124, 15125, 15129]

    Links to problems not solved by Maple:

    [2316, 2319, 3995, 4011, 4040, 4146, 4163, 4198, 4199, 4216, 4287, 4298, 4315, 4343, 6820, 7253, 8704, 8706, 8719, 8731, 8787, 8795, 8796, 8815, 8817, 8820, 8838, 8841, 8845, 8848, 8866, 8872, 8878, 8907, 8910, 8911, 11224, 11230, 11404, 12239, 12421]

  15. Higher order, non-linear and homogeneous.

    Number of problems 26.

    Solved by Mathematica: 73.08%

    Solved by Maple: 73.08%

    Links to problems not solved by Mathematica:

    [10162, 10163, 10173, 10174, 10178, 13535, 15221]

    Links to problems not solved by Maple:

    [10162, 10163, 10173, 10174, 10178, 13535, 15197]

  16. Higher order, non-linear and non-homogeneous.

    Number of problems 12.

    Solved by Mathematica: 50.00%

    Solved by Maple: 50.00%

    Links to problems not solved by Mathematica:

    [10161, 10164, 12226, 12238, 12240, 12243]

    Links to problems not solved by Maple:

    [10161, 10164, 12226, 12238, 12240, 12243]

  17. Second order, non-linear and homogeneous.

    Number of problems 422.

    Solved by Mathematica: 74.64%

    Solved by Maple: 80.09%

    Links to problems not solved by Mathematica:

    [2304, 2307, 2308, 4658, 4668, 4839, 4840, 4841, 6100, 6246, 6839, 6840, 6858, 7214, 7411, 9914, 9924, 9926, 9928, 9929, 9934, 9935, 9936, 9938, 9939, 9940, 9942, 9946, 9948, 9949, 9957, 9959, 9960, 9962, 9965, 9966, 9967, 9968, 9971, 9972, 9981, 9982, 9983, 9985, 9986, 9987, 9988, 9989, 9990, 9995, 9996, 9998, 10001, 10003, 10009, 10013, 10015, 10016, 10025, 10027, 10031, 10033, 10036, 10042, 10055, 10058, 10061, 10065, 10074, 10080, 10084, 10085, 10100, 10111, 10112, 10120, 10129, 10130, 10134, 10138, 10139, 10141, 10142, 10143, 10144, 10150, 10154, 10156, 10159, 11331, 12241, 12256, 12495, 12570, 12571, 13520, 13523, 13524, 13529, 14516, 14517, 15204, 15210, 15211, 15444, 15446, 15449]

    Links to problems not solved by Maple:

    [2304, 2309, 6238, 7214, 7411, 9924, 9928, 9929, 9934, 9935, 9938, 9939, 9940, 9942, 9946, 9948, 9949, 9957, 9959, 9960, 9962, 9965, 9966, 9967, 9968, 9971, 9972, 9981, 9982, 9983, 9985, 9986,