This report shows the result of running Maple and Mathematica on my collection of differential equations. These were collected over time and stored in sqlite3 database. These were collected from a number of textbooks and other references such as Kamke and Murphy collections. All books used are listed here.
The current number of differential equations is [15472].
Both Maple and Mathematica are given a CPU time limit of 3 minutes to solve each ode else the problem is considered not solved and marked as failed.
When Mathematica returns DifferentialRoot
as a solution to an ode then this is
considered as not solved. Similarly, when Maple returns DESol
or ODSESolStruc
, then this is
also considered as not solved.
If CAS solves the ODE within the timelimit, then it is counted as solved. No verification is done to check that the solution is correct or not.
To reduce the size of latex output, in Maple the command simplify
is called on the solution
with timeout of 3 minutes. If this times out, then the unsimplified original ode solution is
used otherwise the simplified one is used.
Similarly for Mathematica, Simplify
is next called. If this timesout, then the unsimplified
solution is used else the simplified one is used. The time used for simplification is not
counted in the CPU time used. The CPU time used only records the time used to solve the
ode.
Tests are run under windows 10 with 128 GB RAM running on intel i9-12900K 3.20 GHz
The following table summarizes perentage solved for each CAS
The following table summarizes the run-time performance of each CAS system.
The problem which Mathematica produced largest leaf size of \(413606\) is 9721.
The problem which Maple produced largest leaf size of \(949416\) is 12388.
The problem which Mathematica used most CPU time of \(175.525\) seconds is 6197.
The problem which Maple used most CPU time of \(140.984\) seconds is 6839.
The following gives the performance of each CAS based on the type of the ODE. Three different classifications of ODE’s are used. The first uses Maple’s own ode advisor classification. The second uses own ODE classification used in my ode solver. The third classification uses a simplified classification of ODE’s which is based on generic type of the ODE.
This uses ODE classifications based on Maple’s ode advisor The following table gives count of the number of ODE’s for each ODE type, where the ODE type here is as classified by Maple’s odeadvisor, and the percentage of solved ODE’s of that type for each CAS. It also gives a direct link to the ODE’s that failed if any.
Type of ODE |
Count |
Mathematica |
Maple |
[_quadrature] |
873 |
98.05% |
|
[[_linear, ‘class A‘]] |
304 |
100.00% |
|
[_separable] |
1196 |
99.16% |
|
[_Riccati] |
322 |
67.39% |
72.98% |
[[_homogeneous, ‘class G‘]] |
70 |
||
[_linear] |
688 |
||
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
31 |
100.00% |
100.00% |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
102 |
99.02% |
100.00% |
[[_homogeneous, ‘class A‘], _dAlembert] |
150 |
99.33% |
100.00% |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
96 |
100.00% |
100.00% |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
60 |
100.00% |
100.00% |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
219 |
100.00% |
|
[[_homogeneous, ‘class C‘], _dAlembert] |
81 |
100.00% |
|
[[_homogeneous, ‘class C‘], _Riccati] |
24 |
100.00% |
100.00% |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
75 |
100.00% |
100.00% |
[_Bernoulli] |
117 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _Bernoulli] |
10 |
100.00% |
100.00% |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]] |
48 |
100.00% |
100.00% |
[‘y=_G(x,y’)‘] |
145 |
62.76% |
57.24% |
[[_1st_order, _with_linear_symmetries]] |
104 |
91.35% |
99.04% |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
38 |
97.37% |
100.00% |
[_exact, _rational] |
43 |
97.67% |
100.00% |
[_exact] |
98 |
||
[[_1st_order, _with_linear_symmetries], _exact, _rational] |
4 |
100.00% |
100.00% |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
4 |
100.00% |
100.00% |
[[_homogeneous, ‘class G‘], _exact, _rational] |
11 |
100.00% |
|
[[_2nd_order, _missing_x]] |
833 |
96.52% |
97.24% |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
121 |
||
[[_Emden, _Fowler]] |
348 |
100.00% |
97.41% |
[[_2nd_order, _exact, _linear, _homogeneous]] |
235 |
99.57% |
|
[[_2nd_order, _missing_y]] |
201 |
||
[[_2nd_order, _with_linear_symmetries]] |
2852 |
94.71% |
95.58% |
[[_2nd_order, _linear, _nonhomogeneous]] |
1111 |
98.47% |
97.66% |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
73 |
100.00% |
100.00% |
system of linear ODEs |
828 |
96.50% |
96.74% |
[_Gegenbauer] |
77 |
100.00% |
100.00% |
[[_high_order, _missing_x]] |
216 |
100.00% |
100.00% |
[[_3rd_order, _missing_x]] |
195 |
100.00% |
100.00% |
[[_3rd_order, _missing_y]] |
97 |
100.00% |
100.00% |
[[_3rd_order, _exact, _linear, _homogeneous]] |
15 |
100.00% |
100.00% |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
76 |
98.68% |
|
[_Lienard] |
59 |
100.00% |
100.00% |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
31 |
100.00% |
100.00% |
[‘x=_G(y,y’)‘] |
13 |
||
[[_Abel, ‘2nd type‘, ‘class B‘]] |
15 |
26.67% |
40.00% |
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
12 |
100.00% |
100.00% |
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
29 |
96.55% |
100.00% |
[[_homogeneous, ‘class D‘], _rational] |
3 |
100.00% |
100.00% |
[[_1st_order, _with_exponential_symmetries]] |
9 |
100.00% |
100.00% |
[_rational] |
111 |
82.88% |
76.58% |
[_rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
136 |
28.68% |
51.47% |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
4 |
100.00% |
100.00% |
[NONE] |
86 |
37.21% |
33.72% |
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
29 |
100.00% |
96.55% |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
58 |
98.28% |
100.00% |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
21 |
100.00% |
100.00% |
[[_high_order, _with_linear_symmetries]] |
57 |
||
[[_3rd_order, _with_linear_symmetries]] |
158 |
88.61% |
89.24% |
[[_high_order, _linear, _nonhomogeneous]] |
89 |
98.88% |
|
[[_1st_order, _with_linear_symmetries], _Clairaut] |
76 |
100.00% |
100.00% |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
52 |
100.00% |
100.00% |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
79 |
98.73% |
98.73% |
[[_homogeneous, ‘class C‘], _rational, _Riccati] |
5 |
100.00% |
100.00% |
[[_Abel, ‘2nd type‘, ‘class A‘]] |
34 |
14.71% |
35.29% |
[_rational, _Bernoulli] |
46 |
100.00% |
100.00% |
[[_homogeneous, ‘class A‘]] |
7 |
100.00% |
100.00% |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
162 |
||
[[_homogeneous, ‘class G‘], _rational, _Riccati] |
21 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _Riccati] |
10 |
100.00% |
100.00% |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Riccati] |
1 |
100.00% |
100.00% |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
2 |
100.00% |
100.00% |
[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
17 |
100.00% |
100.00% |
[_exact, [_Abel, ‘2nd type‘, ‘class B‘]] |
6 |
100.00% |
100.00% |
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
10 |
100.00% |
100.00% |
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
4 |
100.00% |
100.00% |
[_exact, _Bernoulli] |
7 |
100.00% |
100.00% |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
10 |
100.00% |
100.00% |
[_rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
12 |
||
[[_homogeneous, ‘class G‘], _rational] |
98 |
98.98% |
|
[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
2 |
100.00% |
100.00% |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
14 |
100.00% |
100.00% |
[_rational, _Riccati] |
102 |
||
[[_3rd_order, _linear, _nonhomogeneous]] |
93 |
100.00% |
|
[[_high_order, _missing_y]] |
57 |
98.25% |
98.25% |
[[_3rd_order, _exact, _linear, _nonhomogeneous]] |
6 |
100.00% |
100.00% |
[[_high_order, _exact, _linear, _nonhomogeneous]] |
7 |
100.00% |
100.00% |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
34 |
100.00% |
100.00% |
[_exact, [_Abel, ‘2nd type‘, ‘class A‘]] |
2 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class A‘]] |
2 |
100.00% |
100.00% |
[[_Riccati, _special]] |
26 |
100.00% |
100.00% |
[_Abel] |
30 |
66.67% |
66.67% |
[_Laguerre] |
39 |
100.00% |
100.00% |
[_Laguerre, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
4 |
100.00% |
100.00% |
[_Bessel] |
20 |
100.00% |
100.00% |
[_rational, _Abel] |
21 |
95.24% |
100.00% |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
3 |
100.00% |
100.00% |
[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
5 |
100.00% |
100.00% |
[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
8 |
100.00% |
100.00% |
[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
11 |
100.00% |
100.00% |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
6 |
100.00% |
100.00% |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
36 |
100.00% |
100.00% |
[[_homogeneous, ‘class D‘], _Bernoulli] |
6 |
100.00% |
100.00% |
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
11 |
100.00% |
100.00% |
[[_homogeneous, ‘class A‘], _exact, _dAlembert] |
7 |
100.00% |
100.00% |
[[_2nd_order, _quadrature]] |
61 |
98.36% |
98.36% |
[[_high_order, _quadrature]] |
11 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
78 |
||
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
24 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
10 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
17 |
100.00% |
|
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
29 |
||
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
11 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
38 |
100.00% |
97.37% |
[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]] |
5 |
100.00% |
100.00% |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
13 |
100.00% |
100.00% |
[_dAlembert] |
25 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
64 |
82.81% |
100.00% |
[[_homogeneous, ‘class G‘], _rational, _Clairaut] |
10 |
100.00% |
100.00% |
[[_homogeneous, ‘class G‘], _Clairaut] |
3 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut] |
17 |
100.00% |
100.00% |
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
1 |
100.00% |
100.00% |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
6 |
100.00% |
100.00% |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]] |
11 |
100.00% |
100.00% |
[[_3rd_order, _exact, _nonlinear]] |
3 |
66.67% |
66.67% |
[_Jacobi] |
37 |
100.00% |
100.00% |
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
6 |
100.00% |
100.00% |
[[_3rd_order, _quadrature]] |
8 |
100.00% |
100.00% |
[[_homogeneous, ‘class G‘], _exact] |
3 |
100.00% |
100.00% |
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
12 |
100.00% |
100.00% |
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]] |
1 |
100.00% |
100.00% |
[[_homogeneous, ‘class A‘], _exact, _rational, _Riccati] |
1 |
100.00% |
100.00% |
[_erf] |
4 |
100.00% |
100.00% |
[[_homogeneous, ‘class D‘]] |
13 |
100.00% |
100.00% |
[_exact, _rational, _Riccati] |
3 |
100.00% |
100.00% |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
7 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _rational] |
26 |
100.00% |
100.00% |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
20 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _exact] |
3 |
100.00% |
100.00% |
[[_homogeneous, ‘class C‘], _exact, _dAlembert] |
5 |
100.00% |
100.00% |
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
2 |
100.00% |
100.00% |
[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
2 |
100.00% |
100.00% |
[_rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
40 |
27.50% |
45.00% |
[[_homogeneous, ‘class G‘], _dAlembert] |
7 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli] |
5 |
100.00% |
100.00% |
[[_homogeneous, ‘class G‘], _Abel] |
4 |
100.00% |
100.00% |
[[_homogeneous, ‘class G‘], _Chini] |
4 |
100.00% |
100.00% |
[_Chini] |
4 |
||
[_rational, [_Riccati, _special]] |
9 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _rational, _Riccati] |
3 |
100.00% |
100.00% |
[[_homogeneous, ‘class D‘], _Riccati] |
20 |
100.00% |
100.00% |
[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]] |
4 |
100.00% |
100.00% |
[[_homogeneous, ‘class G‘], _Riccati] |
4 |
100.00% |
100.00% |
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
5 |
100.00% |
100.00% |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
6 |
100.00% |
100.00% |
[_exact, _rational, _Bernoulli] |
4 |
75.00% |
75.00% |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
5 |
100.00% |
100.00% |
[[_Abel, ‘2nd type‘, ‘class C‘]] |
7 |
||
[[_homogeneous, ‘class C‘], _rational] |
8 |
100.00% |
100.00% |
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]] |
2 |
100.00% |
100.00% |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
17 |
100.00% |
100.00% |
unknown |
8 |
||
[_rational, _dAlembert] |
12 |
91.67% |
100.00% |
[[_1st_order, _with_linear_symmetries], _rational, _dAlembert] |
9 |
100.00% |
100.00% |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
6 |
100.00% |
100.00% |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
15 |
100.00% |
100.00% |
[_Clairaut] |
7 |
100.00% |
85.71% |
[[_homogeneous, ‘class D‘], _exact, _rational, _Bernoulli] |
1 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
9 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
10 |
90.00% |
100.00% |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]] |
3 |
66.67% |
100.00% |
[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
9 |
100.00% |
100.00% |
[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
3 |
100.00% |
100.00% |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
3 |
100.00% |
100.00% |
[[_homogeneous, ‘class G‘], _rational, _Abel] |
2 |
100.00% |
100.00% |
[[_elliptic, _class_I]] |
2 |
100.00% |
100.00% |
[[_elliptic, _class_II]] |
2 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear]] |
1 |
100.00% |
100.00% |
[_Hermite] |
16 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]] |
3 |
100.00% |
100.00% |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
4 |
100.00% |
100.00% |
[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]] |
3 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _Chini] |
2 |
100.00% |
100.00% |
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
2 |
100.00% |
100.00% |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]] |
1 |
100.00% |
100.00% |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
3 |
100.00% |
100.00% |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
39 |
100.00% |
|
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] |
6 |
100.00% |
83.33% |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]] |
3 |
100.00% |
100.00% |
[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]] |
1 |
100.00% |
100.00% |
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
3 |
100.00% |
100.00% |
[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]] |
1 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
7 |
100.00% |
100.00% |
[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
2 |
100.00% |
100.00% |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]] |
2 |
100.00% |
100.00% |
[[_Bessel, _modified]] |
2 |
100.00% |
100.00% |
[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]] |
12 |
8.33% |
25.00% |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
3 |
||
[_Liouville, [_2nd_order, _reducible, _mu_xy]] |
3 |
100.00% |
100.00% |
[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
8 |
100.00% |
100.00% |
[_Chini, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
2 |
100.00% |
100.00% |
[[_1st_order, _with_exponential_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
1 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
1 |
100.00% |
100.00% |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
1 |
100.00% |
100.00% |
[[_homogeneous, ‘class G‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
1 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]] |
7 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
8 |
100.00% |
100.00% |
[[_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
4 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _Abel] |
13 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
7 |
100.00% |
100.00% |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
2 |
100.00% |
100.00% |
[[_homogeneous, ‘class D‘], _rational, _Abel] |
3 |
100.00% |
100.00% |
[[_homogeneous, ‘class C‘], _rational, _Abel] |
3 |
100.00% |
100.00% |
[_rational, [_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
3 |
100.00% |
100.00% |
[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
1 |
100.00% |
100.00% |
[[_homogeneous, ‘class C‘], _Abel] |
3 |
100.00% |
100.00% |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
6 |
100.00% |
100.00% |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel] |
5 |
100.00% |
100.00% |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel] |
10 |
100.00% |
100.00% |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
2 |
100.00% |
100.00% |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Abel] |
2 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], _rational, _Abel] |
1 |
100.00% |
100.00% |
[_Titchmarsh] |
2 |
50.00% |
50.00% |
[_ellipsoidal] |
2 |
100.00% |
100.00% |
[_Jacobi, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
1 |
100.00% |
100.00% |
[_Halm] |
4 |
100.00% |
100.00% |
[[_3rd_order, _fully, _exact, _linear]] |
7 |
100.00% |
100.00% |
[[_high_order, _fully, _exact, _linear]] |
1 |
100.00% |
100.00% |
[[_Painleve, ‘1st‘]] |
1 |
0.00% |
0.00% |
[[_Painleve, ‘2nd‘]] |
1 |
0.00% |
0.00% |
[[_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
1 |
0.00% |
0.00% |
[[_2nd_order, _with_potential_symmetries]] |
2 |
100.00% |
100.00% |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
6 |
100.00% |
100.00% |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]] |
2 |
100.00% |
100.00% |
[[_2nd_order, _reducible, _mu_xy]] |
3 |
66.67% |
66.67% |
[[_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
1 |
0.00% |
0.00% |
[[_Painleve, ‘4th‘]] |
1 |
0.00% |
0.00% |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]] |
3 |
100.00% |
100.00% |
[[_Painleve, ‘3rd‘]] |
1 |
0.00% |
0.00% |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]] |
1 |
100.00% |
100.00% |
[[_Painleve, ‘5th‘]] |
1 |
0.00% |
0.00% |
[[_Painleve, ‘6th‘]] |
1 |
0.00% |
0.00% |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]] |
1 |
0.00% |
0.00% |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_poly_yn]] |
1 |
0.00% |
0.00% |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1]] |
1 |
0.00% |
0.00% |
[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]] |
7 |
||
[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] |
1 |
100.00% |
100.00% |
[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]] |
1 |
100.00% |
100.00% |
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]] |
5 |
100.00% |
100.00% |
[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]] |
2 |
50.00% |
50.00% |
[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]] |
2 |
100.00% |
100.00% |
|
96 |
100.00% |
100.00% |
[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class B‘]] |
1 |
100.00% |
100.00% |
[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]] |
1 |
100.00% |
100.00% |
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
1 |
100.00% |
100.00% |
[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]] |
2 |
||
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
2 |
100.00% |
100.00% |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
1 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]] |
2 |
100.00% |
100.00% |
[[_1st_order, _with_exponential_symmetries], _exact] |
1 |
100.00% |
100.00% |
[[_homogeneous, ‘class C‘], _exact, _rational, _dAlembert] |
1 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]] |
2 |
100.00% |
100.00% |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]] |
1 |
100.00% |
100.00% |
[[_high_order, _exact, _linear, _homogeneous]] |
3 |
100.00% |
100.00% |
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
1 |
100.00% |
100.00% |
[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
1 |
100.00% |
100.00% |
[[_2nd_order, _missing_x], _Van_der_Pol] |
1 |
100.00% |
100.00% |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
1 |
100.00% |
100.00% |
[[_homogeneous, ‘class D‘], _exact, _rational] |
1 |
100.00% |
100.00% |
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
1 |
100.00% |
100.00% |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_poly_yn]] |
1 |
100.00% |
100.00% |
[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] |
1 |
0.00% |
100.00% |
The types of the ODE’s are described in my ode solver page at ode types The following table gives count of the number of ODE’s for each ODE type, where the ODE type here is as classified by my own ode solver, and the percentage of solved ODE’s of that type for each CAS. It also gives a direct link to the ODE’s that failed if any.
Type of ODE |
Count |
Mathematica |
Maple |
quadrature |
790 |
97.85% |
99.87% |
linear |
69 |
98.55% |
98.55% |
separable |
126 |
100.00% |
100.00% |
homogeneous |
70 |
98.57% |
100.00% |
homogeneousTypeD2 |
5 |
100.00% |
100.00% |
exact |
308 |
||
exactWithIntegrationFactor |
135 |
99.26% |
|
exactByInspection |
19 |
100.00% |
94.74% |
bernoulli |
25 |
100.00% |
100.00% |
riccati |
478 |
76.99% |
80.96% |
clairaut |
115 |
100.00% |
99.13% |
dAlembert |
253 |
92.89% |
100.00% |
isobaric |
13 |
100.00% |
100.00% |
polynomial |
16 |
100.00% |
100.00% |
abelFirstKind |
58 |
82.76% |
84.48% |
first order ode series method. Taylor series method |
12 |
100.00% |
100.00% |
first order ode series method. Regular singular point |
8 |
100.00% |
100.00% |
first order ode series method. Irregular singular point |
3 |
100.00% |
|
first_order_laplace |
77 |
100.00% |
100.00% |
first_order_ode_lie_symmetry_calculated |
498 |
95.98% |
97.59% |
system of linear ODEs |
802 |
96.88% |
97.01% |
second_order_laplace |
330 |
100.00% |
99.70% |
reduction_of_order |
160 |
||
second_order_linear_constant_coeff |
2 |
100.00% |
|
second_order_airy |
15 |
100.00% |
100.00% |
second_order_change_of_variable_on_x_method_1 |
1 |
100.00% |
100.00% |
second_order_change_of_variable_on_x_method_2 |
5 |
100.00% |
100.00% |
second_order_change_of_variable_on_y_method_2 |
18 |
94.44% |
|
second_order_change_of_variable_on_y_method_1 |
4 |
100.00% |
100.00% |
second_order_integrable_as_is |
12 |
||
second_order_ode_lagrange_adjoint_equation_method |
9 |
88.89% |
100.00% |
second_order_nonlinear_solved_by_mainardi_lioville_method |
14 |
100.00% |
100.00% |
second_order_bessel_ode |
136 |
91.18% |
|
second_order_bessel_ode_form_A |
7 |
100.00% |
100.00% |
second_order_ode_missing_x |
168 |
86.90% |
88.69% |
second_order_ode_missing_y |
60 |
||
second order series method. Taylor series method |
8 |
87.50% |
87.50% |
second order series method. Regular singular point. Difference not integer |
266 |
100.00% |
|
second order series method. Regular singular point. Repeated root |
208 |
100.00% |
99.52% |
second order series method. Regular singular point. Difference is integer |
322 |
100.00% |
99.69% |
second order series method. Irregular singular point |
38 |
0.00% |
|
second order series method. Regular singular point. Complex roots |
30 |
100.00% |
100.00% |
second_order_ode_high_degree |
1 |
100.00% |
100.00% |
higher_order_linear_constant_coefficients_ODE |
728 |
100.00% |
100.00% |
higher_order_ODE_non_constant_coefficients_of_type_Euler |
96 |
100.00% |
100.00% |
higher_order_laplace |
29 |
100.00% |
100.00% |
This chapter shows how each CAS performed based on the following basic differential equations types. A differential equation is classified as one of the following types.
For first order ode, the following are the main classifications used.
First order ode not linear in \(y'(x)\) (such as d’Alembert, Clairaut). But it is important to note that in this case the ode is nonlinear in \(y'\) when written in the form \(y=g(x,y')\). For an example, lets look at this ode \[ y' = -\frac {x}{2}-1+\frac {\sqrt {x^{2}+4 x +4 y}}{2} \] Which is linear in \(y'\) as it stands. But in d’Alembert, Clairaut we always look at the ode in the form \(y=g(x,y')\). Hence, if we solve for \(y\) first, the above ode now becomes \begin {align*} y &= x y' + \left ( (y')^{2}+ 2 y' + 1 \right )\\ &= g(x,y') \end {align*}
Now we see that \(g(x,y')\) is nonlinear in \(y'\). The above ode happens to be of type Clairaut.
For second order and higher order ode’s, further classification is
Another classification for second order and higher order ode’s is
Another classification for second order and higher order ode’s is
All of the above can be combined to give this classification
First order ode.
Second and higher order ode
Linear second order ode.
Nonlinear second order ode.
For system of differential equation the following classification is used.
System of first order odes.
System of second order odes.
The following gives count of the number of ODE’s for each ODE type as specified above, and the percentage of solved ODE’s of that type for each CAS. It also gives a direct link to the ODE’s that failed if any.
First order ode.
Number of problems 6876.
Solved by Mathematica: 93.22%
Solved by Maple: 94.90%
Links to problems not solved by Mathematica:
[119, 133, 146, 485, 550, 553, 885, 958, 959, 961, 962, 964, 966, 968, 1039, 1041, 1046, 1069, 1075, 1697, 1698, 1700, 1701, 1702, 1703, 1704, 1706, 1707, 1897, 1941, 1953, 1985, 1986, 2026, 2031, 2083, 2085, 2316, 2319, 2350, 2707, 2713, 2990, 3000, 3022, 3092, 3118, 3137, 3192, 3193, 3229, 3231, 3232, 3236, 3304, 3324, 3326, 3339, 3352, 3355, 3363, 3368, 3384, 3463, 3639, 3642, 3673, 3676, 3728, 3776, 3783, 3843, 4011, 4146, 4216, 4251, 4252, 4253, 4260, 4261, 4266, 4274, 4275, 4278, 4287, 4290, 4294, 4299, 4305, 4315, 4386, 4451, 4917, 4951, 4954, 4962, 4995, 5247, 5346, 5761, 6111, 6169, 6183, 6185, 6264, 6549, 6797, 6807, 6811, 6813, 6874, 6878, 7063, 7102, 7253, 7254, 7316, 7345, 8384, 8385, 8387, 8392, 8393, 8411, 8416, 8419, 8424, 8447, 8457, 8538, 8539, 8541, 8542, 8555, 8570, 8573, 8586, 8589, 8601, 8605, 8667, 8676, 8703, 8706, 8731, 8766, 8795, 8796, 8815, 8817, 8824, 8838, 8841, 8845, 8866, 8907, 8910, 8911, 9170, 9172, 9219, 9228, 10339, 10346, 10349, 10359, 10363, 10392, 10401, 10405, 10406, 10415, 10432, 10436, 10440, 10445, 10452, 10461, 10476, 10479, 10480, 10481, 10483, 10487, 10501, 10503, 10504, 10505, 10514, 10516, 10517, 10532, 10536, 10538, 10541, 10545, 10549, 10554, 10555, 10556, 10557, 10560, 10562, 10563, 10566, 10569, 10571, 10572, 10575, 10578, 10580, 10581, 10584, 10587, 10589, 10590, 10593, 10597, 10598, 10599, 10603, 10604, 10607, 10609, 10611, 10612, 10613, 10614, 10615, 10616, 10617, 10618, 10620, 10621, 10622, 10623, 10624, 10625, 10626, 10627, 10628, 10629, 10632, 10636, 10637, 10638, 10639, 10640, 10641, 10642, 10643, 10644, 10645, 10646, 10647, 10648, 10649, 10653, 10654, 10655, 10657, 10658, 10659, 10661, 10662, 10664, 10666, 10667, 10669, 10670, 10671, 10673, 10674, 10676, 10677, 10678, 10679, 10680, 10683, 10684, 10685, 10686, 10687, 10688, 10689, 10690, 10691, 10692, 10696, 10697, 10698, 10699, 10700, 10701, 10702, 10704, 10705, 10706, 10707, 10708, 10709, 10710, 10711, 10712, 10713, 10714, 10715, 10716, 10717, 10718, 10719, 10720, 10721, 10722, 10723, 10724, 10730, 10731, 10733, 10734, 10735, 10736, 10737, 10738, 10740, 10741, 10745, 10747, 10748, 10749, 10750, 10751, 10752, 10755, 10756, 10757, 10758, 10759, 10760, 10761, 10762, 10763, 10764, 10765, 10766, 10767, 10768, 10769, 10770, 10771, 10772, 10773, 10774, 10775, 10776, 10777, 10778, 10779, 10780, 10781, 10782, 10783, 10784, 10785, 10786, 10787, 10788, 10789, 10790, 10791, 10792, 10793, 10794, 10795, 10796, 10797, 10798, 10799, 10800, 10801, 10802, 10803, 10804, 10805, 10807, 10808, 10810, 10811, 10812, 10813, 10814, 10815, 10816, 10817, 10819, 10820, 10822, 10823, 10824, 11198, 11212, 11215, 11219, 11224, 11240, 11404, 11415, 11599, 11604, 11610, 11995, 12127, 12129, 12134, 12148, 12214, 12220, 12239, 12631, 12636, 12910, 12911, 12914, 12935, 12936, 12938, 12962, 12965, 12966, 12967, 13034, 13057, 13289, 13348, 14046, 14101, 14126, 14133, 14201, 14296, 14313, 14323, 14327, 14328, 14378, 14384, 14439, 14440, 14441, 14941, 14980, 14999, 15000, 15001, 15002, 15006, 15046, 15066, 15067, 15073, 15074, 15095, 15124, 15125, 15126, 15129]
Links to problems not solved by Maple:
[133, 485, 550, 553, 958, 959, 961, 962, 964, 966, 968, 1039, 1046, 1075, 1697, 1700, 1701, 1702, 1703, 1704, 1706, 1707, 1935, 1938, 1953, 1984, 1985, 2026, 2063, 2316, 2319, 2707, 2713, 2990, 3090, 3092, 3118, 3192, 3193, 3324, 3326, 3339, 3352, 3355, 3363, 3368, 3382, 3384, 3395, 3463, 3642, 3673, 3676, 3728, 3776, 3783, 3843, 3872, 3926, 3995, 4011, 4040, 4146, 4163, 4198, 4199, 4216, 4287, 4298, 4315, 4343, 4386, 4914, 4917, 4951, 4954, 4962, 4995, 5247, 6111, 6169, 6183, 6185, 6264, 6549, 6820, 7063, 7253, 7316, 7345, 8384, 8385, 8387, 8392, 8393, 8411, 8416, 8419, 8424, 8447, 8457, 8538, 8539, 8541, 8542, 8555, 8570, 8573, 8586, 8589, 8601, 8605, 8676, 8703, 8704, 8706, 8719, 8731, 8787, 8795, 8796, 8815, 8817, 8820, 8838, 8841, 8845, 8848, 8866, 8872, 8878, 8907, 8910, 8911, 9068, 9124, 9125, 9170, 9172, 9219, 9228, 9246, 9254, 10339, 10346, 10359, 10361, 10363, 10401, 10406, 10418, 10426, 10432, 10436, 10438, 10440, 10445, 10461, 10476, 10479, 10480, 10481, 10483, 10487, 10501, 10503, 10514, 10516, 10532, 10545, 10547, 10554, 10562, 10563, 10566, 10571, 10572, 10575, 10580, 10581, 10584, 10589, 10590, 10593, 10597, 10598, 10603, 10604, 10606, 10607, 10609, 10611, 10612, 10613, 10614, 10615, 10616, 10617, 10618, 10620, 10623, 10624, 10625, 10626, 10628, 10632, 10636, 10637, 10638, 10639, 10640, 10641, 10642, 10643, 10644, 10645, 10646, 10647, 10648, 10649, 10655, 10659, 10661, 10664, 10669, 10670, 10676, 10677, 10678, 10679, 10680, 10687, 10688, 10690, 10691, 10692, 10697, 10699, 10700, 10704, 10705, 10708, 10709, 10710, 10711, 10712, 10713, 10715, 10716, 10717, 10718, 10719, 10720, 10721, 10722, 10723, 10724, 10733, 10734, 10735, 10736, 10737, 10741, 10747, 10748, 10749, 10750, 10751, 10755, 10757, 10758, 10759, 10760, 10761, 10762, 10763, 10764, 10766, 10767, 10769, 10770, 10771, 10772, 10774, 10775, 10777, 10778, 10779, 10781, 10782, 10783, 10784, 10785, 10786, 10787, 10791, 10792, 10794, 10795, 10797, 10798, 10799, 10800, 10801, 10802, 10805, 10808, 10812, 10813, 10815, 10816, 10817, 10820, 10822, 10823, 11198, 11224, 11230, 11404, 11415, 11518, 11599, 11604, 11994, 11995, 12134, 12214, 12218, 12220, 12239, 12421, 12631, 12636, 12938, 13034, 13057, 13289, 13348, 14101, 14126, 14133, 14296, 14313, 14323, 14327, 14328, 14440, 14441, 14941, 15001, 15059]
Second order linear ODE.
Number of problems 4610.
Solved by Mathematica: 96.79%
Solved by Maple: 97.83%
Links to problems not solved by Mathematica:
[1105, 1162, 1186, 5813, 5818, 7178, 7179, 7182, 7183, 7187, 7189, 7288, 7462, 7554, 7556, 7976, 7978, 9349, 9353, 9360, 9364, 9365, 9371, 9405, 9406, 9407, 9408, 9409, 9487, 9535, 9542, 9546, 9565, 9607, 9634, 9690, 9720, 9730, 9736, 9747, 9762, 9767, 9768, 9769, 9771, 10833, 10840, 10841, 10856, 10861, 10872, 10874, 10875, 10876, 10877, 10878, 10881, 10882, 10883, 10884, 10892, 10902, 10908, 10915, 10921, 10922, 10924, 10925, 10926, 10927, 10928, 10933, 10943, 10945, 10946, 10966, 10967, 10968, 10972, 11012, 11025, 11029, 11030, 11032, 11036, 11039, 11052, 11055, 11056, 11065, 11066, 11067, 11068, 11069, 11070, 11071, 11072, 11073, 11074, 11078, 11079, 11081, 11082, 11084, 11085, 11086, 11087, 11095, 11100, 11103, 11118, 11119, 11121, 11310, 11311, 11329, 11589, 11590, 12050, 12198, 12248, 12249, 12250, 12251, 12252, 12258, 12264, 12281, 12352, 12354, 12412, 12614, 12748, 12749, 13569, 13570, 14121, 14472, 14473, 14633, 14870, 15382, 15384, 15385, 15386, 15436, 15453, 15459]
Links to problems not solved by Maple:
[1162, 1186, 5818, 5833, 6513, 7179, 7187, 7189, 7288, 9349, 9353, 9360, 9364, 9365, 9371, 9405, 9406, 9407, 9408, 9409, 9487, 9535, 9542, 9546, 9565, 9607, 9736, 9767, 9768, 9769, 9771, 10856, 10872, 10874, 10876, 10877, 10882, 10883, 10884, 10915, 10921, 10922, 10925, 10926, 10927, 10928, 10946, 10967, 10968, 10972, 11012, 11022, 11023, 11024, 11027, 11032, 11034, 11039, 11055, 11056, 11065, 11066, 11070, 11071, 11072, 11073, 11081, 11082, 11084, 11087, 11104, 11109, 11111, 11116, 11117, 11118, 11121, 11329, 11589, 11590, 12050, 12248, 12251, 12252, 12264, 12281, 12352, 12354, 12412, 12614, 12749, 13569, 13570, 14121, 14472, 14473, 14633, 14870, 15432, 15453]
Second order ode.
Number of problems 5160.
Solved by Mathematica: 94.28%
Solved by Maple: 95.72%
Links to problems not solved by Mathematica:
[710, 1105, 1162, 1186, 2304, 2307, 2308, 4658, 4668, 4839, 4840, 4841, 5813, 5818, 6100, 6246, 6839, 6840, 6856, 6858, 7107, 7108, 7110, 7178, 7179, 7182, 7183, 7187, 7189, 7212, 7214, 7288, 7411, 7462, 7554, 7556, 7976, 7978, 8386, 9349, 9353, 9360, 9364, 9365, 9371, 9405, 9406, 9407, 9408, 9409, 9487, 9535, 9542, 9546, 9565, 9607, 9634, 9690, 9720, 9730, 9736, 9747, 9762, 9767, 9768, 9769, 9771, 9914, 9916, 9918, 9919, 9921, 9922, 9924, 9926, 9928, 9929, 9931, 9932, 9934, 9935, 9936, 9938, 9939, 9940, 9941, 9942, 9946, 9947, 9948, 9949, 9950, 9951, 9957, 9959, 9960, 9962, 9965, 9966, 9967, 9968, 9971, 9972, 9981, 9982, 9983, 9985, 9986, 9987, 9988, 9989, 9990, 9995, 9996, 9998, 10000, 10001, 10003, 10005, 10007, 10008, 10009, 10013, 10015, 10016, 10018, 10019, 10025, 10027, 10031, 10033, 10036, 10042, 10052, 10055, 10057, 10058, 10060, 10061, 10062, 10065, 10074, 10080, 10084, 10085, 10100, 10102, 10103, 10111, 10112, 10120, 10124, 10125, 10129, 10130, 10134, 10138, 10139, 10141, 10142, 10143, 10144, 10148, 10150, 10154, 10155, 10156, 10159, 10725, 10833, 10840, 10841, 10856, 10861, 10872, 10874, 10875, 10876, 10877, 10878, 10881, 10882, 10883, 10884, 10892, 10902, 10908, 10915, 10921, 10922, 10924, 10925, 10926, 10927, 10928, 10933, 10943, 10945, 10946, 10966, 10967, 10968, 10972, 11012, 11025, 11029, 11030, 11032, 11036, 11039, 11052, 11055, 11056, 11065, 11066, 11067, 11068, 11069, 11070, 11071, 11072, 11073, 11074, 11078, 11079, 11081, 11082, 11084, 11085, 11086, 11087, 11095, 11100, 11103, 11118, 11119, 11121, 11310, 11311, 11329, 11331, 11589, 11590, 12050, 12198, 12241, 12248, 12249, 12250, 12251, 12252, 12256, 12258, 12264, 12269, 12281, 12352, 12354, 12412, 12495, 12570, 12571, 12614, 12748, 12749, 13250, 13520, 13523, 13524, 13529, 13569, 13570, 14050, 14051, 14121, 14472, 14473, 14516, 14517, 14626, 14633, 14870, 15204, 15210, 15211, 15382, 15384, 15385, 15386, 15436, 15444, 15446, 15449, 15453, 15459]
Links to problems not solved by Maple:
[710, 1162, 1186, 2304, 2309, 5818, 5833, 6238, 6513, 7107, 7110, 7179, 7187, 7189, 7214, 7288, 7411, 8386, 9349, 9353, 9360, 9364, 9365, 9371, 9405, 9406, 9407, 9408, 9409, 9487, 9535, 9542, 9546, 9565, 9607, 9736, 9767, 9768, 9769, 9771, 9916, 9918, 9919, 9921, 9922, 9924, 9928, 9929, 9931, 9932, 9934, 9935, 9938, 9939, 9940, 9941, 9942, 9946, 9947, 9948, 9949, 9950, 9951, 9957, 9959, 9960, 9962, 9965, 9966, 9967, 9968, 9971, 9972, 9981, 9982, 9983, 9985, 9986, 9987, 9988, 9989, 9990, 9995, 9996, 9998, 10000, 10003, 10005, 10007, 10008, 10009, 10013, 10015, 10016, 10018, 10019, 10021, 10025, 10027, 10028, 10029, 10031, 10032, 10033, 10036, 10042, 10044, 10052, 10055, 10057, 10058, 10060, 10061, 10062, 10065, 10074, 10080, 10084, 10085, 10100, 10111, 10112, 10120, 10124, 10125, 10129, 10130, 10131, 10138, 10139, 10143, 10144, 10148, 10154, 10155, 10157, 10158, 10159, 10725, 10856, 10872, 10874, 10876, 10877, 10882, 10883, 10884, 10915, 10921, 10922, 10925, 10926, 10927, 10928, 10946, 10967, 10968, 10972, 11012, 11022, 11023, 11024, 11027, 11032, 11034, 11039, 11055, 11056, 11065, 11066, 11070, 11071, 11072, 11073, 11081, 11082, 11084, 11087, 11104, 11109, 11111, 11116, 11117, 11118, 11121, 11329, 11589, 11590, 12050, 12241, 12248, 12251, 12252, 12264, 12269, 12281, 12352, 12354, 12412, 12570, 12571, 12614, 12749, 13250, 13529, 13569, 13570, 14050, 14051, 14121, 14472, 14473, 14626, 14633, 14870, 15217, 15432, 15444, 15446, 15449, 15453]
Second ODE homogeneous ODE.
Number of problems 3169.
Solved by Mathematica: 92.84%
Solved by Maple: 94.79%
Links to problems not solved by Mathematica:
[1105, 2304, 2307, 2308, 4658, 4668, 4839, 4840, 4841, 5813, 5818, 6100, 6246, 6839, 6840, 6858, 7214, 7288, 7411, 7554, 7556, 7976, 7978, 9349, 9353, 9360, 9364, 9365, 9371, 9405, 9406, 9407, 9409, 9487, 9535, 9542, 9546, 9565, 9607, 9634, 9690, 9720, 9730, 9736, 9747, 9762, 9767, 9768, 9769, 9771, 9914, 9924, 9926, 9928, 9929, 9934, 9935, 9936, 9938, 9939, 9940, 9942, 9946, 9948, 9949, 9957, 9959, 9960, 9962, 9965, 9966, 9967, 9968, 9971, 9972, 9981, 9982, 9983, 9985, 9986, 9987, 9988, 9989, 9990, 9995, 9996, 9998, 10001, 10003, 10009, 10013, 10015, 10016, 10025, 10027, 10031, 10033, 10036, 10042, 10055, 10058, 10061, 10065, 10074, 10080, 10084, 10085, 10100, 10111, 10112, 10120, 10129, 10130, 10134, 10138, 10139, 10141, 10142, 10143, 10144, 10150, 10154, 10156, 10159, 10833, 10840, 10841, 10856, 10861, 10872, 10874, 10875, 10876, 10877, 10878, 10881, 10882, 10883, 10884, 10892, 10902, 10908, 10915, 10921, 10922, 10924, 10925, 10926, 10927, 10928, 10933, 10943, 10945, 10946, 10966, 10967, 10968, 10972, 11012, 11025, 11029, 11030, 11032, 11036, 11039, 11052, 11055, 11056, 11065, 11066, 11067, 11068, 11069, 11070, 11071, 11072, 11073, 11074, 11078, 11079, 11081, 11082, 11084, 11085, 11086, 11087, 11095, 11100, 11103, 11118, 11119, 11121, 11310, 11311, 11329, 11331, 11589, 11590, 12050, 12241, 12249, 12250, 12256, 12258, 12264, 12412, 12495, 12570, 12571, 12614, 13520, 13523, 13524, 13529, 13569, 13570, 14472, 14473, 14516, 14517, 15204, 15210, 15211, 15444, 15446, 15449, 15453]
Links to problems not solved by Maple:
[2304, 2309, 5818, 6238, 7214, 7288, 7411, 9349, 9353, 9360, 9364, 9365, 9371, 9405, 9406, 9407, 9409, 9487, 9535, 9542, 9546, 9565, 9607, 9736, 9767, 9768, 9769, 9771, 9924, 9928, 9929, 9934, 9935, 9938, 9939, 9940, 9942, 9946, 9948, 9949, 9957, 9959, 9960, 9962, 9965, 9966, 9967, 9968, 9971, 9972, 9981, 9982, 9983, 9985, 9986, 9987, 9988, 9989, 9990, 9995, 9996, 9998, 10003, 10009, 10013, 10015, 10016, 10025, 10027, 10028, 10029, 10031, 10032, 10033, 10036, 10042, 10044, 10055, 10058, 10061, 10065, 10074, 10080, 10084, 10085, 10100, 10111, 10112, 10120, 10129, 10130, 10131, 10138, 10139, 10143, 10144, 10154, 10157, 10158, 10159, 10856, 10872, 10874, 10876, 10877, 10882, 10883, 10884, 10915, 10921, 10922, 10925, 10926, 10927, 10928, 10946, 10967, 10968, 10972, 11012, 11022, 11023, 11024, 11027, 11032, 11034, 11039, 11055, 11056, 11065, 11066, 11070, 11071, 11072, 11073, 11081, 11082, 11084, 11087, 11104, 11109, 11111, 11116, 11117, 11118, 11121, 11329, 11589, 11590, 12050, 12241, 12264, 12412, 12570, 12571, 12614, 13529, 13569, 13570, 14472, 14473, 15444, 15446, 15449, 15453]
Second ODE non-homogeneous ODE.
Number of problems 1991.
Solved by Mathematica: 96.58%
Solved by Maple: 97.19%
Links to problems not solved by Mathematica:
[710, 1162, 1186, 6856, 7107, 7108, 7110, 7178, 7179, 7182, 7183, 7187, 7189, 7212, 7462, 8386, 9408, 9916, 9918, 9919, 9921, 9922, 9931, 9932, 9941, 9947, 9950, 9951, 10000, 10005, 10007, 10008, 10018, 10019, 10052, 10057, 10060, 10062, 10102, 10103, 10124, 10125, 10148, 10155, 10725, 12198, 12248, 12251, 12252, 12269, 12281, 12352, 12354, 12748, 12749, 13250, 14050, 14051, 14121, 14626, 14633, 14870, 15382, 15384, 15385, 15386, 15436, 15459]
Links to problems not solved by Maple:
[710, 1162, 1186, 5833, 6513, 7107, 7110, 7179, 7187, 7189, 8386, 9408, 9916, 9918, 9919, 9921, 9922, 9931, 9932, 9941, 9947, 9950, 9951, 10000, 10005, 10007, 10008, 10018, 10019, 10021, 10052, 10057, 10060, 10062, 10124, 10125, 10148, 10155, 10725, 12248, 12251, 12252, 12269, 12281, 12352, 12354, 12749, 13250, 14050, 14051, 14121, 14626, 14633, 14870, 15217, 15432]
Second order non-linear ODE.
Number of problems 550.
Solved by Mathematica: 73.27%
Solved by Maple: 78.00%
Links to problems not solved by Mathematica:
[710, 2304, 2307, 2308, 4658, 4668, 4839, 4840, 4841, 6100, 6246, 6839, 6840, 6856, 6858, 7107, 7108, 7110, 7212, 7214, 7411, 8386, 9914, 9916, 9918, 9919, 9921, 9922, 9924, 9926, 9928, 9929, 9931, 9932, 9934, 9935, 9936, 9938, 9939, 9940, 9941, 9942, 9946, 9947, 9948, 9949, 9950, 9951, 9957, 9959, 9960, 9962, 9965, 9966, 9967, 9968, 9971, 9972, 9981, 9982, 9983, 9985, 9986, 9987, 9988, 9989, 9990, 9995, 9996, 9998, 10000, 10001, 10003, 10005, 10007, 10008, 10009, 10013, 10015, 10016, 10018, 10019, 10025, 10027, 10031, 10033, 10036, 10042, 10052, 10055, 10057, 10058, 10060, 10061, 10062, 10065, 10074, 10080, 10084, 10085, 10100, 10102, 10103, 10111, 10112, 10120, 10124, 10125, 10129, 10130, 10134, 10138, 10139, 10141, 10142, 10143, 10144, 10148, 10150, 10154, 10155, 10156, 10159, 10725, 11331, 12241, 12256, 12269, 12495, 12570, 12571, 13250, 13520, 13523, 13524, 13529, 14050, 14051, 14516, 14517, 14626, 15204, 15210, 15211, 15444, 15446, 15449]
Links to problems not solved by Maple:
[710, 2304, 2309, 6238, 7107, 7110, 7214, 7411, 8386, 9916, 9918, 9919, 9921, 9922, 9924, 9928, 9929, 9931, 9932, 9934, 9935, 9938, 9939, 9940, 9941, 9942, 9946, 9947, 9948, 9949, 9950, 9951, 9957, 9959, 9960, 9962, 9965, 9966, 9967, 9968, 9971, 9972, 9981, 9982, 9983, 9985, 9986, 9987, 9988, 9989, 9990, 9995, 9996, 9998, 10000, 10003, 10005, 10007, 10008, 10009, 10013, 10015, 10016, 10018, 10019, 10021, 10025, 10027, 10028, 10029, 10031, 10032, 10033, 10036, 10042, 10044, 10052, 10055, 10057, 10058, 10060, 10061, 10062, 10065, 10074, 10080, 10084, 10085, 10100, 10111, 10112, 10120, 10124, 10125, 10129, 10130, 10131, 10138, 10139, 10143, 10144, 10148, 10154, 10155, 10157, 10158, 10159, 10725, 12241, 12269, 12570, 12571, 13250, 13529, 14050, 14051, 14626, 15217, 15444, 15446, 15449]
Solved using series method.
Number of problems 1555.
Solved by Mathematica: 99.74%
Solved by Maple: 96.27%
Links to problems not solved by Mathematica:
Links to problems not solved by Maple:
[408, 409, 1794, 1797, 1805, 2376, 2400, 2541, 2920, 4701, 4714, 4718, 4722, 4723, 5003, 5010, 5217, 5500, 5501, 5502, 5521, 5526, 5556, 5564, 5588, 5589, 5590, 6042, 6418, 6441, 6443, 6449, 6459, 6460, 6581, 6584, 6592, 6617, 6618, 7224, 7225, 7226, 7230, 7231, 7233, 7241, 7300, 7301, 7303, 7304, 7305, 7306, 7307, 11904, 11905, 12406, 12407, 14803]
Third and higher order ode.
Number of problems 1054.
Solved by Mathematica: 95.73%
Solved by Maple: 96.11%
Links to problems not solved by Mathematica:
[813, 5817, 9362, 9413, 9784, 9785, 9786, 9787, 9788, 9789, 9790, 9800, 9801, 9803, 9811, 9816, 9827, 9840, 9841, 9856, 9865, 9866, 9867, 9868, 9875, 9895, 9904, 9909, 9913, 10161, 10162, 10163, 10164, 10173, 10174, 10178, 12223, 12226, 12227, 12238, 12240, 12243, 13535, 13559, 15221]
Links to problems not solved by Maple:
[813, 5817, 9362, 9413, 9784, 9785, 9786, 9787, 9788, 9789, 9790, 9800, 9801, 9803, 9811, 9816, 9835, 9840, 9856, 9865, 9866, 9867, 9868, 9904, 9905, 9909, 9913, 10161, 10162, 10163, 10164, 10173, 10174, 10178, 12226, 12238, 12240, 12243, 13535, 13559, 15197]
First order ode linear in derivative.
Number of problems 5933.
Solved by Mathematica: 93.22%
Solved by Maple: 94.77%
Links to problems not solved by Mathematica:
[119, 133, 146, 485, 550, 553, 885, 958, 959, 961, 962, 964, 966, 968, 1039, 1041, 1046, 1069, 1075, 1697, 1698, 1700, 1701, 1702, 1703, 1704, 1706, 1707, 1897, 1941, 1953, 1985, 1986, 2026, 2031, 2083, 2085, 2707, 2713, 2990, 3022, 3092, 3118, 3137, 3192, 3193, 3304, 3324, 3326, 3339, 3352, 3355, 3363, 3368, 3384, 3463, 3639, 3642, 3673, 3676, 3728, 3776, 3783, 3843, 4386, 4451, 4917, 4951, 4954, 4962, 4995, 5247, 5761, 6111, 6169, 6183, 6185, 6264, 6549, 7063, 7102, 7316, 7345, 8384, 8385, 8387, 8392, 8393, 8411, 8416, 8419, 8424, 8447, 8457, 8538, 8539, 8541, 8542, 8555, 8570, 8573, 8586, 8589, 8601, 8605, 8667, 8676, 8703, 9170, 9172, 9219, 9228, 10339, 10346, 10349, 10359, 10363, 10392, 10401, 10405, 10406, 10415, 10432, 10436, 10440, 10445, 10452, 10461, 10476, 10479, 10480, 10481, 10483, 10487, 10501, 10503, 10504, 10505, 10514, 10516, 10517, 10532, 10536, 10538, 10541, 10545, 10549, 10554, 10555, 10556, 10557, 10560, 10562, 10563, 10566, 10569, 10571, 10572, 10575, 10578, 10580, 10581, 10584, 10587, 10589, 10590, 10593, 10597, 10598, 10599, 10603, 10604, 10607, 10609, 10611, 10612, 10613, 10614, 10615, 10616, 10617, 10618, 10620, 10621, 10622, 10623, 10624, 10625, 10626, 10627, 10628, 10629, 10632, 10636, 10637, 10638, 10639, 10640, 10641, 10642, 10643, 10644, 10645, 10646, 10647, 10648, 10649, 10653, 10654, 10655, 10657, 10658, 10659, 10661, 10662, 10664, 10666, 10667, 10669, 10670, 10671, 10673, 10674, 10676, 10677, 10678, 10679, 10680, 10683, 10684, 10685, 10686, 10687, 10688, 10689, 10690, 10691, 10692, 10696, 10697, 10698, 10699, 10700, 10701, 10702, 10704, 10705, 10706, 10707, 10708, 10709, 10710, 10711, 10712, 10713, 10714, 10715, 10716, 10717, 10718, 10719, 10720, 10721, 10722, 10723, 10724, 10730, 10731, 10733, 10734, 10735, 10736, 10737, 10738, 10740, 10741, 10745, 10747, 10748, 10749, 10750, 10751, 10752, 10755, 10756, 10757, 10758, 10759, 10760, 10761, 10762, 10763, 10764, 10765, 10766, 10767, 10768, 10769, 10770, 10771, 10772, 10773, 10774, 10775, 10776, 10777, 10778, 10779, 10780, 10781, 10782, 10783, 10784, 10785, 10786, 10787, 10788, 10789, 10790, 10791, 10792, 10793, 10794, 10795, 10796, 10797, 10798, 10799, 10800, 10801, 10802, 10803, 10804, 10805, 10807, 10808, 10810, 10811, 10812, 10813, 10814, 10815, 10816, 10817, 10819, 10820, 10822, 10823, 10824, 11198, 11415, 11599, 11604, 11610, 11995, 12134, 12214, 12220, 12631, 12636, 12910, 12911, 12914, 12935, 12936, 12938, 12962, 12965, 12966, 12967, 13034, 13057, 13289, 13348, 14046, 14101, 14126, 14133, 14201, 14296, 14313, 14323, 14327, 14328, 14378, 14384, 14439, 14440, 14441, 14941, 14980, 14999, 15000, 15001, 15002, 15006, 15046, 15066, 15067, 15073, 15074, 15126]
Links to problems not solved by Maple:
[133, 485, 550, 553, 958, 959, 961, 962, 964, 966, 968, 1039, 1046, 1075, 1697, 1700, 1701, 1702, 1703, 1704, 1706, 1707, 1935, 1938, 1953, 1984, 1985, 2026, 2063, 2707, 2713, 2990, 3090, 3092, 3118, 3192, 3193, 3324, 3326, 3339, 3352, 3355, 3363, 3368, 3382, 3384, 3395, 3463, 3642, 3673, 3676, 3728, 3776, 3783, 3843, 3872, 3926, 4386, 4914, 4917, 4951, 4954, 4962, 4995, 5247, 6111, 6169, 6183, 6185, 6264, 6549, 7063, 7316, 7345, 8384, 8385, 8387, 8392, 8393, 8411, 8416, 8419, 8424, 8447, 8457, 8538, 8539, 8541, 8542, 8555, 8570, 8573, 8586, 8589, 8601, 8605, 8676, 8703, 9068, 9124, 9125, 9170, 9172, 9219, 9228, 9246, 9254, 10339, 10346, 10359, 10361, 10363, 10401, 10406, 10418, 10426, 10432, 10436, 10438, 10440, 10445, 10461, 10476, 10479, 10480, 10481, 10483, 10487, 10501, 10503, 10514, 10516, 10532, 10545, 10547, 10554, 10562, 10563, 10566, 10571, 10572, 10575, 10580, 10581, 10584, 10589, 10590, 10593, 10597, 10598, 10603, 10604, 10606, 10607, 10609, 10611, 10612, 10613, 10614, 10615, 10616, 10617, 10618, 10620, 10623, 10624, 10625, 10626, 10628, 10632, 10636, 10637, 10638, 10639, 10640, 10641, 10642, 10643, 10644, 10645, 10646, 10647, 10648, 10649, 10655, 10659, 10661, 10664, 10669, 10670, 10676, 10677, 10678, 10679, 10680, 10687, 10688, 10690, 10691, 10692, 10697, 10699, 10700, 10704, 10705, 10708, 10709, 10710, 10711, 10712, 10713, 10715, 10716, 10717, 10718, 10719, 10720, 10721, 10722, 10723, 10724, 10733, 10734, 10735, 10736, 10737, 10741, 10747, 10748, 10749, 10750, 10751, 10755, 10757, 10758, 10759, 10760, 10761, 10762, 10763, 10764, 10766, 10767, 10769, 10770, 10771, 10772, 10774, 10775, 10777, 10778, 10779, 10781, 10782, 10783, 10784, 10785, 10786, 10787, 10791, 10792, 10794, 10795, 10797, 10798, 10799, 10800, 10801, 10802, 10805, 10808, 10812, 10813, 10815, 10816, 10817, 10820, 10822, 10823, 11198, 11415, 11518, 11599, 11604, 11994, 11995, 12134, 12214, 12218, 12220, 12631, 12636, 12938, 13034, 13057, 13289, 13348, 14101, 14126, 14133, 14296, 14313, 14323, 14327, 14328, 14440, 14441, 14941, 15001, 15059]
System of differential equations.
Number of problems 827.
Solved by Mathematica: 96.49%
Solved by Maple: 96.74%
Links to problems not solved by Mathematica:
[6104, 6542, 6543, 10213, 10228, 10238, 10241, 10242, 10243, 10244, 10245, 10250, 10251, 10254, 10255, 10256, 10257, 10258, 10259, 10261, 12827, 12828, 12829, 12830, 12842, 14043, 15506, 15517, 15524]
Links to problems not solved by Maple:
[6104, 6542, 6543, 6716, 6719, 10213, 10228, 10238, 10241, 10242, 10243, 10244, 10245, 10250, 10251, 10254, 10256, 10257, 10259, 10261, 12827, 12828, 12829, 12830, 12842, 14043, 15524]
Third and higher order homogeneous ODE.
Number of problems 599.
Solved by Mathematica: 94.32%
Solved by Maple: 94.49%
Links to problems not solved by Mathematica:
[813, 5817, 9362, 9413, 9784, 9785, 9786, 9787, 9788, 9789, 9790, 9800, 9801, 9803, 9811, 9816, 9827, 9840, 9841, 9856, 9865, 9866, 9867, 9868, 9895, 9913, 10162, 10163, 10173, 10174, 10178, 13535, 13559, 15221]
Links to problems not solved by Maple:
[813, 5817, 9362, 9413, 9784, 9785, 9786, 9787, 9788, 9789, 9790, 9800, 9801, 9803, 9811, 9816, 9835, 9840, 9856, 9865, 9866, 9867, 9868, 9905, 9913, 10162, 10163, 10173, 10174, 10178, 13535, 13559, 15197]
Third and higher order linear ODE.
Number of problems 1016.
Solved by Mathematica: 96.85%
Solved by Maple: 97.24%
Links to problems not solved by Mathematica:
[813, 5817, 9362, 9413, 9784, 9785, 9786, 9787, 9788, 9789, 9790, 9800, 9801, 9803, 9811, 9816, 9827, 9840, 9841, 9856, 9865, 9866, 9867, 9868, 9875, 9895, 9904, 9909, 9913, 12223, 12227, 13559]
Links to problems not solved by Maple:
[813, 5817, 9362, 9413, 9784, 9785, 9786, 9787, 9788, 9789, 9790, 9800, 9801, 9803, 9811, 9816, 9835, 9840, 9856, 9865, 9866, 9867, 9868, 9904, 9905, 9909, 9913, 13559]
Third and higher order non-linear ODE.
Number of problems 38.
Solved by Mathematica: 65.79%
Solved by Maple: 65.79%
Links to problems not solved by Mathematica:
[10161, 10162, 10163, 10164, 10173, 10174, 10178, 12226, 12238, 12240, 12243, 13535, 15221]
Links to problems not solved by Maple:
[10161, 10162, 10163, 10164, 10173, 10174, 10178, 12226, 12238, 12240, 12243, 13535, 15197]
First order ode non-linear in derivative.
Number of problems 943.
Solved by Mathematica: 93.21%
Solved by Maple: 95.65%
Links to problems not solved by Mathematica:
[2316, 2319, 2350, 3000, 3229, 3231, 3232, 3236, 4011, 4146, 4216, 4251, 4252, 4253, 4260, 4261, 4266, 4274, 4275, 4278, 4287, 4290, 4294, 4299, 4305, 4315, 5346, 6797, 6807, 6811, 6813, 6874, 6878, 7253, 7254, 8706, 8731, 8766, 8795, 8796, 8815, 8817, 8824, 8838, 8841, 8845, 8866, 8907, 8910, 8911, 11212, 11215, 11219, 11224, 11240, 11404, 12127, 12129, 12148, 12239, 15095, 15124, 15125, 15129]
Links to problems not solved by Maple:
[2316, 2319, 3995, 4011, 4040, 4146, 4163, 4198, 4199, 4216, 4287, 4298, 4315, 4343, 6820, 7253, 8704, 8706, 8719, 8731, 8787, 8795, 8796, 8815, 8817, 8820, 8838, 8841, 8845, 8848, 8866, 8872, 8878, 8907, 8910, 8911, 11224, 11230, 11404, 12239, 12421]
Higher order, non-linear and homogeneous.
Number of problems 26.
Solved by Mathematica: 73.08%
Solved by Maple: 73.08%
Links to problems not solved by Mathematica:
[10162, 10163, 10173, 10174, 10178, 13535, 15221]
Links to problems not solved by Maple:
Higher order, non-linear and non-homogeneous.
Number of problems 12.
Solved by Mathematica: 50.00%
Solved by Maple: 50.00%
Links to problems not solved by Mathematica:
[10161, 10164, 12226, 12238, 12240, 12243]
Links to problems not solved by Maple:
Second order, non-linear and homogeneous.
Number of problems 422.
Solved by Mathematica: 74.64%
Solved by Maple: 80.09%
Links to problems not solved by Mathematica:
[2304, 2307, 2308, 4658, 4668, 4839, 4840, 4841, 6100, 6246, 6839, 6840, 6858, 7214, 7411, 9914, 9924, 9926, 9928, 9929, 9934, 9935, 9936, 9938, 9939, 9940, 9942, 9946, 9948, 9949, 9957, 9959, 9960, 9962, 9965, 9966, 9967, 9968, 9971, 9972, 9981, 9982, 9983, 9985, 9986, 9987, 9988, 9989, 9990, 9995, 9996, 9998, 10001, 10003, 10009, 10013, 10015, 10016, 10025, 10027, 10031, 10033, 10036, 10042, 10055, 10058, 10061, 10065, 10074, 10080, 10084, 10085, 10100, 10111, 10112, 10120, 10129, 10130, 10134, 10138, 10139, 10141, 10142, 10143, 10144, 10150, 10154, 10156, 10159, 11331, 12241, 12256, 12495, 12570, 12571, 13520, 13523, 13524, 13529, 14516, 14517, 15204, 15210, 15211, 15444, 15446, 15449]
Links to problems not solved by Maple:
[2304, 2309, 6238, 7214, 7411, 9924, 9928, 9929, 9934, 9935, 9938, 9939, 9940, 9942, 9946, 9948, 9949, 9957, 9959, 9960, 9962, 9965, 9966, 9967, 9968, 9971, 9972, 9981, 9982, 9983, 9985, 9986,