Internal
problem
ID
[8888]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
3.0
Problem
number
:
30
Date
solved
:
Wednesday, March 05, 2025 at 07:07:32 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=4*x^2*diff(diff(y(x),x),x)+y(x) = 8*x^(1/2)*(ln(x)+1); dsolve(ode,y(x), singsol=all);
ode=4*x^2*D[y[x],{x,2}]+y[x] == 8*Sqrt[x]*(1+Log[x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-8*sqrt(x)*(log(x) + 1) + 4*x**2*Derivative(y(x), (x, 2)) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)