50.1.26 problem 3(b)

Internal problem ID [7798]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number : 3(b)
Date solved : Wednesday, March 05, 2025 at 05:06:15 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=2 \sin \left (x \right ) \cos \left (x \right ) \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1 \end{align*}

Maple. Time used: 0.007 (sec). Leaf size: 12
ode:=diff(y(x),x) = 2*sin(x)*cos(x); 
ic:=y(0) = 1; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = -\frac {\cos \left (2 x \right )}{2}+\frac {3}{2} \]
Mathematica. Time used: 0.005 (sec). Leaf size: 17
ode=D[y[x],x]==2*Sin[x]*Cos[x]; 
ic={y[0]==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{2} (3-\cos (2 x)) \]
Sympy. Time used: 0.140 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*sin(x)*cos(x) + Derivative(y(x), x),0) 
ics = {y(0): 1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {3}{2} - \frac {\cos {\left (2 x \right )}}{2} \]