50.1.22 problem 2(h)

Internal problem ID [7794]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number : 2(h)
Date solved : Wednesday, March 05, 2025 at 05:06:10 AM
CAS classification : [_quadrature]

\begin{align*} \sin \left (x \right ) y^{\prime }&=1 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 14
ode:=sin(x)*diff(y(x),x) = 1; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\ln \left (\csc \left (x \right )+\cot \left (x \right )\right )+c_{1} \]
Mathematica. Time used: 0.004 (sec). Leaf size: 13
ode=Sin[x]*D[y[x],x]==1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -\text {arctanh}(\cos (x))+c_1 \]
Sympy. Time used: 0.178 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(sin(x)*Derivative(y(x), x) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \frac {\log {\left (\cos {\left (x \right )} - 1 \right )}}{2} - \frac {\log {\left (\cos {\left (x \right )} + 1 \right )}}{2} \]