Internal
problem
ID
[7352]
Book
:
ADVANCED
ENGINEERING
MATHEMATICS.
ERWIN
KREYSZIG,
HERBERT
KREYSZIG,
EDWARD
J.
NORMINTON.
10th
edition.
John
Wiley
USA.
2011
Section
:
Chapter
6.
Laplace
Transforms.
Problem
set
6.2,
page
216
Problem
number
:
6
Date
solved
:
Wednesday, March 05, 2025 at 04:23:53 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)-6*diff(y(t),t)+5*y(t) = 29*cos(2*t); ic:=y(0) = 16/5, D(y)(0) = 31/5; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]-6*D[y[t],t]+5*y[t]==29*Cos[2*t]; ic={y[0]==32/10,Derivative[1][y][0] ==62/10}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(5*y(t) - 29*cos(2*t) - 6*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 16/5, Subs(Derivative(y(t), t), t, 0): 31/5} dsolve(ode,func=y(t),ics=ics)