46.6.4 problem 4

Internal problem ID [7350]
Book : ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section : Chapter 6. Laplace Transforms. Problem set 6.2, page 216
Problem number : 4
Date solved : Wednesday, March 05, 2025 at 04:23:51 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+9 y&=10 \,{\mathrm e}^{-t} \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=0 \end{align*}

Maple. Time used: 0.266 (sec). Leaf size: 21
ode:=diff(diff(y(t),t),t)+9*y(t) = 10*exp(-t); 
ic:=y(0) = 0, D(y)(0) = 0; 
dsolve([ode,ic],y(t),method='laplace');
 
\[ y = -\cos \left (3 t \right )+\frac {\sin \left (3 t \right )}{3}+{\mathrm e}^{-t} \]
Mathematica. Time used: 0.02 (sec). Leaf size: 25
ode=D[y[t],{t,2}]+9*y[t]==10*Exp[-t]; 
ic={y[0]==0,Derivative[1][y][0] ==0}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to e^{-t}+\frac {1}{3} \sin (3 t)-\cos (3 t) \]
Sympy. Time used: 0.161 (sec). Leaf size: 19
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(9*y(t) + Derivative(y(t), (t, 2)) - 10*exp(-t),0) 
ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 0} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \frac {\sin {\left (3 t \right )}}{3} - \cos {\left (3 t \right )} + e^{- t} \]