Internal
problem
ID
[7198]
Book
:
A
First
Course
in
Differential
Equations
with
Modeling
Applications
by
Dennis
G.
Zill.
12
ed.
Metric
version.
2024.
Cengage
learning.
Section
:
Chapter
2.
First
order
differential
equations.
Section
2.3
Linear
equations.
Exercises
2.3
at
page
63
Problem
number
:
59
Date
solved
:
Wednesday, March 05, 2025 at 04:20:52 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = -lambda__1*x(t), diff(y(t),t) = lambda__1*x(t)-lambda__2*y(t)]; dsolve(ode);
ode={D[x[t],t]==-L1*x[t],D[y[t],t]==L1*x[t]-L2*y[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") lambda__1 = symbols("lambda__1") lambda__2 = symbols("lambda__2") x = Function("x") y = Function("y") ode=[Eq(lambda__1*x(t) + Derivative(x(t), t),0),Eq(-lambda__1*x(t) + lambda__2*y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)