43.2.7 problem 7.3.8 (b)

Internal problem ID [6864]
Book : Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section : Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exercises. page 300
Problem number : 7.3.8 (b)
Date solved : Wednesday, March 05, 2025 at 02:47:16 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple
Order:=6; 
ode:=x^2*diff(diff(y(x),x),x)+diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ \text {No solution found} \]
Mathematica. Time used: 0.027 (sec). Leaf size: 84
ode=x^2*D[y[x],{x,2}]+D[y[x],x]+y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_2 e^{\frac {1}{x}} \left (\frac {59241 x^5}{40}+\frac {1911 x^4}{8}+\frac {91 x^3}{2}+\frac {21 x^2}{2}+3 x+1\right ) x^2+c_1 \left (-\frac {91 x^5}{40}+\frac {7 x^4}{8}-\frac {x^3}{2}+\frac {x^2}{2}-x+1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
ValueError : ODE x**2*Derivative(y(x), (x, 2)) + y(x) + Derivative(y(x), x) does not match hint 2nd_power_series_regular