Internal
problem
ID
[6556]
Book
:
Schaums
Outline
Differential
Equations,
4th
edition.
Bronson
and
Costa.
McGraw
Hill
2014
Section
:
Chapter
24.
Solutions
of
linear
DE
by
Laplace
transforms.
Supplementary
Problems.
page
248
Problem
number
:
Problem
24.37
Date
solved
:
Wednesday, March 05, 2025 at 12:56:34 AM
CAS
classification
:
[[_3rd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(diff(y(x),x),x),x)-3*diff(diff(y(x),x),x)+3*diff(y(x),x)-y(x) = x^2*exp(x); ic:=y(0) = 1, D(y)(0) = 2, (D@@2)(y)(0) = 3; dsolve([ode,ic],y(x),method='laplace');
ode=D[y[x],{x,3}]-3*D[y[x],{x,2}]+3*D[y[x],x]-y[x]==x^2*Exp[x]; ic={y[0]==1,Derivative[1][y][0] ==2,Derivative[2][y][0] ==3}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2*exp(x) - y(x) + 3*Derivative(y(x), x) - 3*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 2, Subs(Derivative(y(x), (x, 2)), x, 0): 3} dsolve(ode,func=y(x),ics=ics)