|
# |
ODE |
Mathematica |
Maple |
Sympy |
|
\[
{} \left (3 x +2 y+1\right ) y^{\prime }+4 x +3 y+2 = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y+\left (1+y^{2} {\mathrm e}^{2 x}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y+y^{2}+x^{3} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{2} {\mathrm e}^{x y^{2}}+4 x^{3}+\left (2 x y \,{\mathrm e}^{x y^{2}}-3 y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } = \left (x^{2}+2 y-1\right )^{{2}/{3}}-x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }+y = x^{2} \left (1+{\mathrm e}^{x}\right ) y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 y-x y \ln \left (x \right )-2 x \ln \left (x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+a y = k \,{\mathrm e}^{b x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \left (x +y\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+8 x^{3} y^{3}+2 x y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x y \sqrt {x^{2}-y^{2}}+x \right ) y^{\prime } = y-x^{2} \sqrt {x^{2}-y^{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime }+a y = b \sin \left (k x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }-y^{2}+1 = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (y^{2}+a \sin \left (x \right )\right ) y^{\prime } = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime } = x \,{\mathrm e}^{\frac {y}{x}}+x +y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime }+\cos \left (x \right ) y = {\mathrm e}^{-\sin \left (x \right )}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }-y \left (\ln \left (x y\right )-1\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime }-y^{2}-x^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }+a y+b \,x^{n} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }-y-x \sin \left (\frac {y}{x}\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{2}-3 x y-2 x^{2}+\left (x y-x^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (6 x y+x^{2}+3\right ) y^{\prime }+3 y^{2}+2 x y+2 x = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime }+y^{2}+x y+x^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}-1\right ) y^{\prime }+2 x y-\cos \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2} y-1\right ) y^{\prime }+x y^{2}-1 = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{2}-1\right ) y^{\prime }+x y-3 x y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (1+x^{2}+y^{2}\right ) y^{\prime }+2 x y+x^{2}+3 = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \cos \left (x \right ) y^{\prime }+y+\left (\sin \left (x \right )+1\right ) \cos \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{2}+12 x^{2} y+\left (2 x y+4 x^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}-y\right ) y^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}-y\right ) y^{\prime }-4 x y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y y^{\prime }+x^{2}+y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x y y^{\prime }+3 x^{2}-y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x y-1\right )^{2} x y^{\prime }+\left (1+x^{2} y^{2}\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}+y^{2}\right ) y^{\prime }+2 x \left (y+2 x \right ) = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 3 x y^{2} y^{\prime }+y^{3}-2 x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 y^{3} y^{\prime }+x y^{2}-x^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (2 x y^{3}+x y+x^{2}\right ) y^{\prime }-x y+y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (2 y^{3}+y\right ) y^{\prime }-2 x^{3}-x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} -a y^{3}-\frac {b}{x^{{3}/{2}}}+y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} a x y^{3}+b y^{2}+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }-x^{a} y^{3}+3 y^{2}-x^{-a} y-x^{-2 a}+a \,x^{-a -1} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime }-\left (y-f \left (x \right )\right ) \left (y-g \left (x \right )\right ) \left (y-\frac {a f \left (x \right )+b g \left (x \right )}{a +b}\right ) h \left (x \right )-\frac {f^{\prime }\left (x \right ) \left (y-g \left (x \right )\right )}{f \left (x \right )-g \left (x \right )}-\frac {g^{\prime }\left (x \right ) \left (y-f \left (x \right )\right )}{g \left (x \right )-f \left (x \right )} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime }+x y^{3}+y^{2} a = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (a x +b \right )^{2} y^{\prime }+\left (a x +b \right ) y^{3}+c y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime }+\tan \left (x \right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = {\mathrm e}^{a x}+a y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (1+x \right ) y+x \left (1-y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = a y^{2} x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y \left (x^{2}+1\right ) y^{\prime } = 1+y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \frac {x}{y+1} = \frac {y y^{\prime }}{1+x}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime }+b^{2} y^{2} = a^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {1+y^{2}}{x^{2}+1}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \sin \left (x \right ) \cos \left (y\right ) = \cos \left (x \right ) \sin \left (y\right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} a x y^{\prime }+2 y = x y y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+y^{2} = \frac {a^{2}}{x^{4}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \sin \left (x \right ) y^{\prime } = y \ln \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 1+y^{2}+x y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y y^{\prime }-x y = y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {2 x y^{2}+x}{x^{2} y-y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y y^{\prime }+x y^{2}-8 x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+2 x y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (y+1\right ) y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }-x y = x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 y^{\prime } = 3 \left (y-2\right )^{{1}/{3}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x +x y\right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime }+3 x y = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+2 x y-x \,{\mathrm e}^{-x^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x y^{\prime }+y = 2 x^{{5}/{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \cos \left (x \right ) y^{\prime }+y = \cos \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+\frac {y}{\sqrt {x^{2}+1}} = \frac {1}{x +\sqrt {x^{2}+1}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (1+{\mathrm e}^{x}\right ) y^{\prime }+2 y \,{\mathrm e}^{x} = \left (1+{\mathrm e}^{x}\right ) {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x \ln \left (x \right ) y^{\prime }+y = \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (-x^{2}+1\right ) y^{\prime } = x y+2 x \sqrt {-x^{2}+1}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+y \tanh \left (x \right ) = 2 \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+\cos \left (x \right ) y = \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime } = \cos \left (y \right )-x \tan \left (y \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime }+x-{\mathrm e}^{y} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{\prime } = \frac {3 y^{{2}/{3}}-x}{3 y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+y = x y^{{2}/{3}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+\frac {y}{x} = 2 x^{{3}/{2}} \sqrt {y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 x y^{2} y^{\prime }+3 y^{3} = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x \,{\mathrm e}^{3 y}+{\mathrm e}^{x}+\left (3 x^{2} {\mathrm e}^{3 y}-y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x -y\right ) y^{\prime }+y+x +1 = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \cos \left (x \right ) \cos \left (y\right )+\sin \left (x \right )^{2}-\left (\sin \left (x \right ) \sin \left (y\right )+\cos \left (y\right )^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime }+y^{2}-x y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y y^{\prime } = -x +\sqrt {x^{2}+y^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y+\left (y^{2}-x^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{2}-x y+\left (x y+x^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \cos \left (x +y\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {y}{x}-\tan \left (\frac {y}{x}\right )
\]
|
✓ |
✓ |
✓ |
|