Internal
problem
ID
[5629]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
36
Problem
number
:
1065
Date
solved
:
Tuesday, March 04, 2025 at 10:48:00 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _Clairaut]
ode:=x^2*diff(y(x),x)^3-2*x*y(x)*diff(y(x),x)^2+y(x)^2*diff(y(x),x)+1 = 0; dsolve(ode,y(x), singsol=all);
ode=x^2 (D[y[x],x])^3 -2 x y[x] (D[y[x],x])^2 + y[x]^2 D[y[x],x]+1==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), x)**3 - 2*x*y(x)*Derivative(y(x), x)**2 + y(x)**2*Derivative(y(x), x) + 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out