Internal
problem
ID
[4546]
Book
:
Differential
equations
for
engineers
by
Wei-Chau
XIE,
Cambridge
Press
2010
Section
:
Chapter
7.
Systems
of
linear
differential
equations.
Problems
at
page
351
Problem
number
:
7.14
Date
solved
:
Tuesday, March 04, 2025 at 06:52:11 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t)-2*x(t)+2*diff(y(t),t) = -4*exp(2*t), 2*diff(x(t),t)-3*x(t)+3*diff(y(t),t)-y(t) = 0]; dsolve(ode);
ode={D[x[t],t]-2*x[t]+2*D[y[t],t]==-4*Exp[2*t],2*D[x[t],t]-3*x[t]+3*D[y[t],t]-y[t]==0}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-2*x(t) + 4*exp(2*t) + Derivative(x(t), t) + 2*Derivative(y(t), t),0),Eq(-3*x(t) - y(t) + 2*Derivative(x(t), t) + 3*Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)