Internal
problem
ID
[4228]
Book
:
Advanced
Mathematica,
Book2,
Perkin
and
Perkin,
1992
Section
:
Chapter
11.3,
page
316
Problem
number
:
16
Date
solved
:
Tuesday, March 04, 2025 at 05:56:55 PM
CAS
classification
:
[_separable]
With initial conditions
ode:=x*diff(y(x),x) = x*y(x)+y(x); ic:=y(1) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=x*D[y[x],x]==x*y[x]+y[x]; ic=y[1]==1; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*y(x) + x*Derivative(y(x), x) - y(x),0) ics = {y(1): 1} dsolve(ode,func=y(x),ics=ics)