Internal
problem
ID
[4188]
Book
:
Theory
and
solutions
of
Ordinary
Differential
equations,
Donald
Greenspan,
1960
Section
:
Chapter
7.
Special
functions.
Exercises
at
page
124
Problem
number
:
3(j)
Date
solved
:
Tuesday, March 04, 2025 at 05:55:10 PM
CAS
classification
:
[_Jacobi]
Using series method with expansion around
Order:=6; ode:=diff(diff(y(x),x),x)+(1-5*x)/(-x^2+x)*diff(y(x),x)-4/(-x^2+x)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=D[y[x],{x,2}]+(1-5*x)/(x-x^2)*D[y[x],x]-4/(x-x^2)*y[x] ==0; ic={}; AsymptoticDSolveValue[{ode,ic},{y[x]},{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((1 - 5*x)*Derivative(y(x), x)/(-x**2 + x) + Derivative(y(x), (x, 2)) - 4*y(x)/(-x**2 + x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)