12.13.34 problem 34

Internal problem ID [1925]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number : 34
Date solved : Tuesday, March 04, 2025 at 01:46:19 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+5 x y^{\prime }-\left (-x^{2}+3\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=6\\ y^{\prime }\left (0\right )&=-2 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 20
Order:=6; 
ode:=diff(diff(y(x),x),x)+5*x*diff(y(x),x)-(-x^2+3)*y(x) = 0; 
ic:=y(0) = 6, D(y)(0) = -2; 
dsolve([ode,ic],y(x),type='series',x=0);
 
\[ y = 6-2 x +9 x^{2}+\frac {2}{3} x^{3}-\frac {23}{4} x^{4}-\frac {3}{10} x^{5}+\operatorname {O}\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 34
ode=D[y[x],{x,2}]+5*x*D[y[x],x]-(3-x^2)*y[x]==0; 
ic={y[0]==6,Derivative[1][y][0] ==-2}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to -\frac {3 x^5}{10}-\frac {23 x^4}{4}+\frac {2 x^3}{3}+9 x^2-2 x+6 \]
Sympy. Time used: 0.822 (sec). Leaf size: 42
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(5*x*Derivative(y(x), x) - (3 - x**2)*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 6, Subs(Derivative(y(x), x), x, 0): -2} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = - \frac {3 x^{5} r{\left (3 \right )}}{5} + C_{2} \left (- \frac {23 x^{4}}{24} + \frac {3 x^{2}}{2} + 1\right ) + C_{1} x \left (1 - \frac {x^{4}}{20}\right ) + O\left (x^{6}\right ) \]