9.2.25 problem problem 55

Internal problem ID [959]
Book : Differential equations and linear algebra, 4th ed., Edwards and Penney
Section : Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number : problem 55
Date solved : Tuesday, March 04, 2025 at 12:06:25 PM
CAS classification : [[_3rd_order, _missing_y]]

\begin{align*} x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+x y^{\prime }&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 18
ode:=x^3*diff(diff(diff(y(x),x),x),x)-x^2*diff(diff(y(x),x),x)+x*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 +c_2 \,x^{2}+c_3 \,x^{2} \ln \left (x \right ) \]
Mathematica. Time used: 0.018 (sec). Leaf size: 35
ode=x^3*D[y[x],{x,3}]-x^2*D[y[x],{x,2}]+x*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{4} (2 c_1-c_2) x^2+\frac {1}{2} c_2 x^2 \log (x)+c_3 \]
Sympy. Time used: 0.156 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3*Derivative(y(x), (x, 3)) - x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} x^{2} + C_{3} x^{2} \log {\left (x \right )} \]