Internal
problem
ID
[17207]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
3.
Section
24.2.
Solving
the
Cauchy
problem
for
linear
differential
equation
with
constant
coefficients.
Exercises
page
249
Problem
number
:
833
Date
solved
:
Thursday, March 13, 2025 at 09:18:50 AM
CAS
classification
:
[[_linear, `class A`]]
Using Laplace method With initial conditions
ode:=2*diff(x(t),t)+6*x(t) = t*exp(-3*t); ic:=x(0) = -1/2; dsolve([ode,ic],x(t),method='laplace');
ode=2*D[x[t],t]+6*x[t]==t*Exp[-3*t]; ic={x[0]==-1/2}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(-t*exp(-3*t) + 6*x(t) + 2*Derivative(x(t), t),0) ics = {x(0): -1/2} dsolve(ode,func=x(t),ics=ics)