75.22.9 problem 714

Internal problem ID [17109]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 2 (Higher order ODEs). Section 17. Boundary value problems. Exercises page 163
Problem number : 714
Date solved : Thursday, March 13, 2025 at 09:16:19 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+\alpha y^{\prime }&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&={\mathrm e}^{\alpha }\\ y^{\prime }\left (1\right )&=0 \end{align*}

Maple. Time used: 0.009 (sec). Leaf size: 6
ode:=diff(diff(y(x),x),x)+alpha*diff(y(x),x) = 0; 
ic:=y(0) = exp(alpha), D(y)(1) = 0; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = {\mathrm e}^{\alpha } \]
Mathematica. Time used: 0.019 (sec). Leaf size: 8
ode=D[y[x],{x,2}]+\[Alpha]*D[y[x],x]==0; 
ic={y[0]==Exp[\[Alpha]],Derivative[1][y][1]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{\alpha } \]
Sympy. Time used: 0.158 (sec). Leaf size: 5
from sympy import * 
x = symbols("x") 
Alpha = symbols("Alpha") 
y = Function("y") 
ode = Eq(Alpha*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): exp(alpha), Subs(Derivative(y(x), x), x, 1): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = e^{\alpha } \]