Internal
problem
ID
[17060]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.5
Linear
equations
with
variable
coefficients.
The
Lagrange
method.
Exercises
page
148
Problem
number
:
640
Date
solved
:
Thursday, March 13, 2025 at 09:12:11 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using reduction of order method given that one solution is
ode:=diff(diff(y(x),x),x)+(tan(x)-2*cot(x))*diff(y(x),x)+2*cot(x)^2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+(Tan[x]-2*Cot[x])*D[y[x],x]+2*Cot[x]^2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((tan(x) - 2/tan(x))*Derivative(y(x), x) + 2*y(x)/tan(x)**2 + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE (2*y(x)/tan(x) + tan(x)*Derivative(y(x), (x, 2)))/(tan(x)**2 - 2) + Derivative(y(x), x) cannot be solved by the factorable group method