75.16.17 problem 490

Internal problem ID [16911]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 2 (Higher order ODEs). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132
Problem number : 490
Date solved : Thursday, March 13, 2025 at 09:00:21 AM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime \prime }+y&=x \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 41
ode:=diff(diff(diff(y(x),x),x),x)+y(x) = x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_{2} {\mathrm e}^{\frac {3 x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right )+c_{3} {\mathrm e}^{\frac {3 x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right )+{\mathrm e}^{x} x +c_{1} \right ) {\mathrm e}^{-x} \]
Mathematica. Time used: 0.004 (sec). Leaf size: 57
ode=D[y[x],{x,3}]+y[x]==x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x+c_1 e^{-x}+c_3 e^{x/2} \cos \left (\frac {\sqrt {3} x}{2}\right )+c_2 e^{x/2} \sin \left (\frac {\sqrt {3} x}{2}\right ) \]
Sympy. Time used: 0.114 (sec). Leaf size: 37
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + y(x) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{3} e^{- x} + x + \left (C_{1} \sin {\left (\frac {\sqrt {3} x}{2} \right )} + C_{2} \cos {\left (\frac {\sqrt {3} x}{2} \right )}\right ) e^{\frac {x}{2}} \]