75.12.32 problem 306

Internal problem ID [16819]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 12. Miscellaneous problems. Exercises page 93
Problem number : 306
Date solved : Thursday, March 13, 2025 at 08:52:11 AM
CAS classification : [_separable]

\begin{align*} \sin \left (\ln \left (x \right )\right )-\cos \left (\ln \left (y\right )\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.911 (sec). Leaf size: 94
ode:=sin(ln(x))-cos(ln(y(x)))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{\operatorname {RootOf}\left (-4 \sin \left (\textit {\_Z} \right ) \sin \left (\ln \left (x \right )\right ) {\mathrm e}^{\textit {\_Z}} x +4 \sin \left (\textit {\_Z} \right ) \cos \left (\ln \left (x \right )\right ) {\mathrm e}^{\textit {\_Z}} x -4 i x^{1+i} c_{1} +4 i x^{1-i} c_{1} -8 \sin \left (\textit {\_Z} \right ) {\mathrm e}^{\textit {\_Z}} c_{1} -4 \,{\mathrm e}^{2 \textit {\_Z}} \cos \left (\textit {\_Z} \right )^{2}-i x^{2-2 i}+i x^{2+2 i}-4 x^{1+i} c_{1} -4 x^{1-i} c_{1} +8 c_{1}^{2}+2 x^{2}+2 \,{\mathrm e}^{2 \textit {\_Z}}\right )} \]
Mathematica. Time used: 0.328 (sec). Leaf size: 33
ode=Sin[Log[x]]-Cos[Log[y[x]]]*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\cos (\log (K[1]))dK[1]\&\right ]\left [\int _1^x\sin (\log (K[2]))dK[2]+c_1\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(sin(log(x)) - cos(log(y(x)))*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out