75.4.1 problem 46

Internal problem ID [16624]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 4. Equations with variables separable and equations reducible to them. Exercises page 38
Problem number : 46
Date solved : Thursday, March 13, 2025 at 08:27:19 AM
CAS classification : [_separable]

\begin{align*} 1+y^{2}+\left (x^{2}+1\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 11
ode:=1+y(x)^2+(x^2+1)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\tan \left (\arctan \left (x \right )+c_{1} \right ) \]
Mathematica. Time used: 0.343 (sec). Leaf size: 57
ode=(1+y[x]^2)+(1+x^2)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{K[1]^2+1}dK[1]\&\right ]\left [\int _1^x-\frac {1}{K[2]^2+1}dK[2]+c_1\right ] \\ y(x)\to -i \\ y(x)\to i \\ \end{align*}
Sympy. Time used: 0.295 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x**2 + 1)*Derivative(y(x), x) + y(x)**2 + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \tan {\left (C_{1} - \operatorname {atan}{\left (x \right )} \right )} \]