74.1.31 problem 38

Internal problem ID [15732]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 1. Introduction to Differential Equations. Exercises 1.1, page 10
Problem number : 38
Date solved : Thursday, March 13, 2025 at 06:16:51 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=x \ln \left (x \right ) \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 18
ode:=diff(y(x),x) = x*ln(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\ln \left (x \right ) x^{2}}{2}-\frac {x^{2}}{4}+c_{1} \]
Mathematica. Time used: 0.003 (sec). Leaf size: 24
ode=D[y[x],x]==x*Log[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -\frac {x^2}{4}+\frac {1}{2} x^2 \log (x)+c_1 \]
Sympy. Time used: 0.193 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*log(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \frac {x^{2} \log {\left (x \right )}}{2} - \frac {x^{2}}{4} \]