Internal
problem
ID
[15665]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
36.
The
big
theorem
on
the
the
Frobenius
method.
Additional
Exercises.
page
739
Problem
number
:
36.2
(d)
Date
solved
:
Thursday, March 13, 2025 at 06:14:52 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=x^2*(-x^2+2)*diff(diff(y(x),x),x)+(4*x^2+5*x)*diff(y(x),x)+(x^2+1)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=x^2*(2-x^2)*D[y[x],{x,2}]+(5*x+4*x^2)*D[y[x],x]+(1+x^2)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(2 - x**2)*Derivative(y(x), (x, 2)) + (x**2 + 1)*y(x) + (4*x**2 + 5*x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)