72.20.1 problem 2

Internal problem ID [14888]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 6. Laplace transform. Section 6.4. page 608
Problem number : 2
Date solved : Thursday, March 13, 2025 at 05:18:31 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+3 y&=5 \delta \left (t -2\right ) \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=0 \end{align*}

Maple. Time used: 10.763 (sec). Leaf size: 21
ode:=diff(diff(y(t),t),t)+3*y(t) = 5*Dirac(t-2); 
ic:=y(0) = 0, D(y)(0) = 0; 
dsolve([ode,ic],y(t),method='laplace');
 
\[ y = \frac {5 \sqrt {3}\, \operatorname {Heaviside}\left (t -2\right ) \sin \left (\sqrt {3}\, \left (t -2\right )\right )}{3} \]
Mathematica. Time used: 0.088 (sec). Leaf size: 160
ode=D[y[t],{t,2}]+3*y[t]==DiracDelta[t-2]; 
ic={y[0]==2,Derivative[1][y][0] ==0}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to \cos \left (\sqrt {3} t\right ) \left (-\int _1^0-\frac {\delta (K[1]-2) \sin \left (2 \sqrt {3}\right )}{\sqrt {3}}dK[1]\right )+\cos \left (\sqrt {3} t\right ) \int _1^t-\frac {\delta (K[1]-2) \sin \left (2 \sqrt {3}\right )}{\sqrt {3}}dK[1]-\sin \left (\sqrt {3} t\right ) \int _1^0\frac {\cos \left (2 \sqrt {3}\right ) \delta (K[2]-2)}{\sqrt {3}}dK[2]+\sin \left (\sqrt {3} t\right ) \int _1^t\frac {\cos \left (2 \sqrt {3}\right ) \delta (K[2]-2)}{\sqrt {3}}dK[2]+2 \cos \left (\sqrt {3} t\right ) \]
Sympy. Time used: 0.898 (sec). Leaf size: 114
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-5*Dirac(t - 2) + 3*y(t) + Derivative(y(t), (t, 2)),0) 
ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 0} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (- \frac {5 \sqrt {3} \int \operatorname {Dirac}{\left (t - 2 \right )} \sin {\left (\sqrt {3} t \right )}\, dt}{3} + \frac {5 \sqrt {3} \int \limits ^{0} \operatorname {Dirac}{\left (t - 2 \right )} \sin {\left (\sqrt {3} t \right )}\, dt}{3}\right ) \cos {\left (\sqrt {3} t \right )} + \left (\frac {5 \sqrt {3} \int \operatorname {Dirac}{\left (t - 2 \right )} \cos {\left (\sqrt {3} t \right )}\, dt}{3} - \frac {5 \sqrt {3} \int \limits ^{0} \operatorname {Dirac}{\left (t - 2 \right )} \cos {\left (\sqrt {3} t \right )}\, dt}{3}\right ) \sin {\left (\sqrt {3} t \right )} \]