Internal
problem
ID
[14847]
Book
:
DIFFERENTIAL
EQUATIONS
by
Paul
Blanchard,
Robert
L.
Devaney,
Glen
R.
Hall.
4th
edition.
Brooks/Cole.
Boston,
USA.
2012
Section
:
Chapter
4.
Forcing
and
Resonance.
Section
4.1
page
399
Problem
number
:
31
Date
solved
:
Thursday, March 13, 2025 at 04:21:37 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=diff(diff(y(t),t),t)+4*y(t) = -3*t^2+2*t+3; ic:=y(0) = 2, D(y)(0) = 0; dsolve([ode,ic],y(t), singsol=all);
ode=D[y[t],{t,2}]+4*y[t]==-3*t^2+2*t+3; ic={y[0]==0,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(3*t**2 - 2*t + 4*y(t) + Derivative(y(t), (t, 2)) - 3,0) ics = {y(0): 2, Subs(Derivative(y(t), t), t, 0): 0} dsolve(ode,func=y(t),ics=ics)