72.16.30 problem 31

Internal problem ID [14847]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number : 31
Date solved : Thursday, March 13, 2025 at 04:21:37 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+4 y&=-3 t^{2}+2 t +3 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=2\\ y^{\prime }\left (0\right )&=0 \end{align*}

Maple. Time used: 0.016 (sec). Leaf size: 26
ode:=diff(diff(y(t),t),t)+4*y(t) = -3*t^2+2*t+3; 
ic:=y(0) = 2, D(y)(0) = 0; 
dsolve([ode,ic],y(t), singsol=all);
 
\[ y = -\frac {\sin \left (2 t \right )}{4}+\frac {7 \cos \left (2 t \right )}{8}-\frac {3 t^{2}}{4}+\frac {t}{2}+\frac {9}{8} \]
Mathematica. Time used: 0.015 (sec). Leaf size: 31
ode=D[y[t],{t,2}]+4*y[t]==-3*t^2+2*t+3; 
ic={y[0]==0,Derivative[1][y][0] ==0}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to \frac {1}{8} \left (-6 t^2+4 t-2 \sin (2 t)-9 \cos (2 t)+9\right ) \]
Sympy. Time used: 0.100 (sec). Leaf size: 31
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(3*t**2 - 2*t + 4*y(t) + Derivative(y(t), (t, 2)) - 3,0) 
ics = {y(0): 2, Subs(Derivative(y(t), t), t, 0): 0} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = - \frac {3 t^{2}}{4} + \frac {t}{2} - \frac {\sin {\left (2 t \right )}}{4} + \frac {7 \cos {\left (2 t \right )}}{8} + \frac {9}{8} \]