72.9.15 problem 34

Internal problem ID [14732]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 3. Linear Systems. Exercises section 3.1. page 258
Problem number : 34
Date solved : Thursday, March 13, 2025 at 04:17:53 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=1\\ \frac {d}{d t}y \left (t \right )&=x \left (t \right ) \end{align*}

Maple. Time used: 0.037 (sec). Leaf size: 20
ode:=[diff(x(t),t) = 1, diff(y(t),t) = x(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= c_{2} +t \\ y &= c_{2} t +\frac {1}{2} t^{2}+c_{1} \\ \end{align*}
Mathematica. Time used: 0.002 (sec). Leaf size: 26
ode={D[x[t],t]==1,D[y[t],t]==x[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to t+c_1 \\ y(t)\to \frac {t^2}{2}+c_1 t+c_2 \\ \end{align*}
Sympy. Time used: 0.069 (sec). Leaf size: 17
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(Derivative(x(t), t) - 1,0),Eq(-x(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = C_{1} + t, \ y{\left (t \right )} = C_{1} t + C_{2} + \frac {t^{2}}{2}\right ] \]