72.1.8 problem 11

Internal problem ID [14529]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number : 11
Date solved : Thursday, March 13, 2025 at 03:32:28 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=2 t y^{2}+3 y^{2} \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 16
ode:=diff(y(t),t) = 2*t*y(t)^2+3*y(t)^2; 
dsolve(ode,y(t), singsol=all);
 
\[ y = \frac {1}{-t^{2}+c_{1} -3 t} \]
Mathematica. Time used: 0.138 (sec). Leaf size: 23
ode=D[y[t],t]==2*t*y[t]^2+3*y[t]^2; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)\to -\frac {1}{t^2+3 t+c_1} \\ y(t)\to 0 \\ \end{align*}
Sympy. Time used: 0.175 (sec). Leaf size: 14
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-2*t*y(t)**2 - 3*y(t)**2 + Derivative(y(t), t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = - \frac {1}{C_{1} + t^{2} + 3 t} \]