72.1.3 problem 6

Internal problem ID [14524]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number : 6
Date solved : Thursday, March 13, 2025 at 03:32:15 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=t^{4} y \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 12
ode:=diff(y(t),t) = t^4*y(t); 
dsolve(ode,y(t), singsol=all);
 
\[ y = c_{1} {\mathrm e}^{\frac {t^{5}}{5}} \]
Mathematica. Time used: 0.022 (sec). Leaf size: 22
ode=D[y[t],t]==t^4*y[t]; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)\to c_1 e^{\frac {t^5}{5}} \\ y(t)\to 0 \\ \end{align*}
Sympy. Time used: 0.330 (sec). Leaf size: 10
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-t**4*y(t) + Derivative(y(t), t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = C_{1} e^{\frac {t^{5}}{5}} \]