Internal
problem
ID
[13576]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
9,
The
Laplace
transform.
Section
9.3,
Exercises
page
452
Problem
number
:
12
Date
solved
:
Wednesday, March 05, 2025 at 10:04:01 PM
CAS
classification
:
[[_3rd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(diff(y(t),t),t),t)-6*diff(diff(y(t),t),t)+11*diff(y(t),t)-6*y(t) = 36*t*exp(4*t); ic:=y(0) = -1, D(y)(0) = 0, (D@@2)(y)(0) = -6; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,3}]-6*D[y[t],{t,2}]+11*D[y[t],t]-6*y[t]==36*t*Exp[4*t]; ic={y[0]==-1,Derivative[1][y][0]==0,Derivative[2][y][0]==-6}; DSolve[{ode,ic},{y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-36*t*exp(4*t) - 6*y(t) + 11*Derivative(y(t), t) - 6*Derivative(y(t), (t, 2)) + Derivative(y(t), (t, 3)),0) ics = {y(0): -1, Subs(Derivative(y(t), t), t, 0): 0, Subs(Derivative(y(t), (t, 2)), t, 0): -6} dsolve(ode,func=y(t),ics=ics)