62.22.2 problem Ex 2

Internal problem ID [12845]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter VII, Linear differential equations with constant coefficients. Article 44. Roots of auxiliary equation repeated. Page 94
Problem number : Ex 2
Date solved : Wednesday, March 05, 2025 at 08:48:18 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 19
ode:=diff(diff(diff(y(x),x),x),x)-diff(diff(y(x),x),x)-diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_{1} {\mathrm e}^{-x}+\left (x c_3 +c_{2} \right ) {\mathrm e}^{x} \]
Mathematica. Time used: 0.004 (sec). Leaf size: 25
ode=D[y[x],{x,3}]-D[y[x],{x,2}]-D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 e^{-x}+e^x (c_3 x+c_2) \]
Sympy. Time used: 0.191 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - Derivative(y(x), x) - Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{3} e^{- x} + \left (C_{1} + C_{2} x\right ) e^{x} \]