Internal
problem
ID
[12802]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
IV,
differential
equations
of
the
first
order
and
higher
degree
than
the
first.
Article
24.
Equations
solvable
for
\(p\).
Page
49
Problem
number
:
Ex
6
Date
solved
:
Wednesday, March 05, 2025 at 08:32:34 PM
CAS
classification
:
[_quadrature]
ode:=diff(y(x),x)^3-(y(x)^2+2*x)*diff(y(x),x)^2+(x^2-y(x)^2+2*x*y(x)^2)*diff(y(x),x)-(x^2-y(x)^2)*y(x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=(D[y[x],x])^3-(2*x+y[x]^2)*(D[y[x],x])^2+(x^2-y[x]^2+2*x*y[x]^2)*D[y[x],x]-(x^2-y[x]^2)*y[x]^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-(2*x + y(x)**2)*Derivative(y(x), x)**2 - (x**2 - y(x)**2)*y(x)**2 + (x**2 + 2*x*y(x)**2 - y(x)**2)*Derivative(y(x), x) + Derivative(y(x), x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)