Internal
problem
ID
[12701]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.3-1.
Equations
with
exponential
functions
Problem
number
:
16
Date
solved
:
Wednesday, March 05, 2025 at 08:17:27 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+2*k*exp(x*mu)*diff(y(x),x)+(a*exp(2*lambda*x)+b*exp(lambda*x)+k^2*exp(2*x*mu)+k*mu*exp(x*mu)+c)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+2*k*Exp[\[Mu]*x]*D[y[x],x]+(a*Exp[2*\[Lambda]*x]+b*Exp[\[Lambda]*x]+k^2*Exp[2*\[Mu]*x]+k*\[Mu]*Exp[\[Mu]*x]+c)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") k = symbols("k") cg = symbols("cg") mu = symbols("mu") y = Function("y") ode = Eq(2*k*exp(mu*x)*Derivative(y(x), x) + (a*exp(2*cg*x) + b*exp(cg*x) + c + k**2*exp(2*mu*x) + k*mu*exp(mu*x))*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False