61.3.8 problem 8

Internal problem ID [12013]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing Exponential Functions
Problem number : 8
Date solved : Wednesday, March 05, 2025 at 03:50:39 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=y^{2}+a \,{\mathrm e}^{8 \lambda x}+b \,{\mathrm e}^{6 \lambda x}+c \,{\mathrm e}^{4 \lambda x}-\lambda ^{2} \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 1020
ode:=diff(y(x),x) = y(x)^2+a*exp(8*lambda*x)+b*exp(6*lambda*x)+c*exp(4*lambda*x)-lambda^2; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {Expression too large to display} \]
Mathematica. Time used: 2.617 (sec). Leaf size: 1515
ode=D[y[x],x]==y[x]^2+a*Exp[8*\[Lambda]*x]+b*Exp[6*\[Lambda]*x]+c*Exp[4*\[Lambda]*x]-\[Lambda]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
cg = symbols("cg") 
y = Function("y") 
ode = Eq(-a*exp(8*cg*x) - b*exp(6*cg*x) - c*exp(4*cg*x) + cg**2 - y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -a*exp(8*cg*x) - b*exp(6*cg*x) - c*exp(4*cg*x) + cg**2 - y(x)**2 + Derivative(y(x), x) cannot be solved by the lie group method