Integrand size = 312, antiderivative size = 21 \[ \int \frac {-5+320 x-720 x^2+240 x^3-20 x^4+\left (680 x-320 x^2+30 x^3\right ) \log (2)+\left (80 x-10 x^2\right ) \log ^2(2)}{256 x-2048 x^2+6400 x^3-9728 x^4+7264 x^5-2432 x^6+400 x^7-32 x^8+x^9+\left (2048 x-12544 x^2+27648 x^3-25792 x^4+9344 x^5-1584 x^6+128 x^7-4 x^8\right ) \log (2)+\left (6144 x-26112 x^2+33888 x^3-13440 x^4+2352 x^5-192 x^6+6 x^7\right ) \log ^2(2)+\left (8192 x-19456 x^2+8576 x^3-1552 x^4+128 x^5-4 x^6\right ) \log ^3(2)+\left (4096 x-2048 x^2+384 x^3-32 x^4+x^5\right ) \log ^4(2)+\left (32 x-128 x^2+144 x^3-32 x^4+2 x^5+\left (128 x-272 x^2+64 x^3-4 x^4\right ) \log (2)+\left (128 x-32 x^2+2 x^3\right ) \log ^2(2)\right ) \log (x)+x \log ^2(x)} \, dx=\frac {5}{(-4+(-8+x) (-x+\log (2)))^2+\log (x)} \]
[Out]
\[ \int \frac {-5+320 x-720 x^2+240 x^3-20 x^4+\left (680 x-320 x^2+30 x^3\right ) \log (2)+\left (80 x-10 x^2\right ) \log ^2(2)}{256 x-2048 x^2+6400 x^3-9728 x^4+7264 x^5-2432 x^6+400 x^7-32 x^8+x^9+\left (2048 x-12544 x^2+27648 x^3-25792 x^4+9344 x^5-1584 x^6+128 x^7-4 x^8\right ) \log (2)+\left (6144 x-26112 x^2+33888 x^3-13440 x^4+2352 x^5-192 x^6+6 x^7\right ) \log ^2(2)+\left (8192 x-19456 x^2+8576 x^3-1552 x^4+128 x^5-4 x^6\right ) \log ^3(2)+\left (4096 x-2048 x^2+384 x^3-32 x^4+x^5\right ) \log ^4(2)+\left (32 x-128 x^2+144 x^3-32 x^4+2 x^5+\left (128 x-272 x^2+64 x^3-4 x^4\right ) \log (2)+\left (128 x-32 x^2+2 x^3\right ) \log ^2(2)\right ) \log (x)+x \log ^2(x)} \, dx=\int \frac {-5+320 x-720 x^2+240 x^3-20 x^4+\left (680 x-320 x^2+30 x^3\right ) \log (2)+\left (80 x-10 x^2\right ) \log ^2(2)}{256 x-2048 x^2+6400 x^3-9728 x^4+7264 x^5-2432 x^6+400 x^7-32 x^8+x^9+\left (2048 x-12544 x^2+27648 x^3-25792 x^4+9344 x^5-1584 x^6+128 x^7-4 x^8\right ) \log (2)+\left (6144 x-26112 x^2+33888 x^3-13440 x^4+2352 x^5-192 x^6+6 x^7\right ) \log ^2(2)+\left (8192 x-19456 x^2+8576 x^3-1552 x^4+128 x^5-4 x^6\right ) \log ^3(2)+\left (4096 x-2048 x^2+384 x^3-32 x^4+x^5\right ) \log ^4(2)+\left (32 x-128 x^2+144 x^3-32 x^4+2 x^5+\left (128 x-272 x^2+64 x^3-4 x^4\right ) \log (2)+\left (128 x-32 x^2+2 x^3\right ) \log ^2(2)\right ) \log (x)+x \log ^2(x)} \, dx \]
[In]
[Out]
Rubi steps \begin{align*} \text {integral}& = \int \frac {5 \left (-1-4 x^4+6 x^3 (8+\log (2))+8 x (8+\log (2)) (1+2 \log (2))-2 x^2 \left (72+32 \log (2)+\log ^2(2)\right )\right )}{x \left (\left (4+x^2-x (8+\log (2))+\log (256)\right )^2+\log (x)\right )^2} \, dx \\ & = 5 \int \frac {-1-4 x^4+6 x^3 (8+\log (2))+8 x (8+\log (2)) (1+2 \log (2))-2 x^2 \left (72+32 \log (2)+\log ^2(2)\right )}{x \left (\left (4+x^2-x (8+\log (2))+\log (256)\right )^2+\log (x)\right )^2} \, dx \\ & = 5 \int \frac {-1-4 x^4+6 x^3 (8+\log (2))-2 x^2 \left (72+32 \log (2)+\log ^2(2)\right )+8 x (8+\log (2)) (1+\log (4))}{x \left (\left (4+x^2-x (8+\log (2))+\log (256)\right )^2+\log (x)\right )^2} \, dx \\ & = 5 \int \left (-\frac {1}{x \left (x^4-16 x^3 \left (1+\frac {\log (2)}{8}\right )+72 x^2 \left (1+\frac {1}{72} \log (2) (32+\log (2))\right )+16 (1+(1+\log (2)) \log (16))-64 x \left (1+\frac {1}{8} \log (2) \left (1+\frac {(8+\log (2)) \log (256)}{\log (16)}\right )\right )+\log (x)\right )^2}-\frac {4 x^3}{\left (x^4-16 x^3 \left (1+\frac {\log (2)}{8}\right )+72 x^2 \left (1+\frac {1}{72} \log (2) (32+\log (2))\right )+16 (1+(1+\log (2)) \log (16))-64 x \left (1+\frac {1}{8} \log (2) \left (1+\frac {(8+\log (2)) \log (256)}{\log (16)}\right )\right )+\log (x)\right )^2}+\frac {6 x^2 (8+\log (2))}{\left (x^4-16 x^3 \left (1+\frac {\log (2)}{8}\right )+72 x^2 \left (1+\frac {1}{72} \log (2) (32+\log (2))\right )+16 (1+(1+\log (2)) \log (16))-64 x \left (1+\frac {1}{8} \log (2) \left (1+\frac {(8+\log (2)) \log (256)}{\log (16)}\right )\right )+\log (x)\right )^2}+\frac {2 x \left (-72-32 \log (2)-\log ^2(2)\right )}{\left (x^4-16 x^3 \left (1+\frac {\log (2)}{8}\right )+72 x^2 \left (1+\frac {1}{72} \log (2) (32+\log (2))\right )+16 (1+(1+\log (2)) \log (16))-64 x \left (1+\frac {1}{8} \log (2) \left (1+\frac {(8+\log (2)) \log (256)}{\log (16)}\right )\right )+\log (x)\right )^2}+\frac {8 (8+\log (2)) (1+\log (4))}{\left (x^4-16 x^3 \left (1+\frac {\log (2)}{8}\right )+72 x^2 \left (1+\frac {1}{72} \log (2) (32+\log (2))\right )+16 (1+(1+\log (2)) \log (16))-64 x \left (1+\frac {1}{8} \log (2) \left (1+\frac {(8+\log (2)) \log (256)}{\log (16)}\right )\right )+\log (x)\right )^2}\right ) \, dx \\ & = -\left (5 \int \frac {1}{x \left (x^4-16 x^3 \left (1+\frac {\log (2)}{8}\right )+72 x^2 \left (1+\frac {1}{72} \log (2) (32+\log (2))\right )+16 (1+(1+\log (2)) \log (16))-64 x \left (1+\frac {1}{8} \log (2) \left (1+\frac {(8+\log (2)) \log (256)}{\log (16)}\right )\right )+\log (x)\right )^2} \, dx\right )-20 \int \frac {x^3}{\left (x^4-16 x^3 \left (1+\frac {\log (2)}{8}\right )+72 x^2 \left (1+\frac {1}{72} \log (2) (32+\log (2))\right )+16 (1+(1+\log (2)) \log (16))-64 x \left (1+\frac {1}{8} \log (2) \left (1+\frac {(8+\log (2)) \log (256)}{\log (16)}\right )\right )+\log (x)\right )^2} \, dx+(30 (8+\log (2))) \int \frac {x^2}{\left (x^4-16 x^3 \left (1+\frac {\log (2)}{8}\right )+72 x^2 \left (1+\frac {1}{72} \log (2) (32+\log (2))\right )+16 (1+(1+\log (2)) \log (16))-64 x \left (1+\frac {1}{8} \log (2) \left (1+\frac {(8+\log (2)) \log (256)}{\log (16)}\right )\right )+\log (x)\right )^2} \, dx-\left (10 \left (72+32 \log (2)+\log ^2(2)\right )\right ) \int \frac {x}{\left (x^4-16 x^3 \left (1+\frac {\log (2)}{8}\right )+72 x^2 \left (1+\frac {1}{72} \log (2) (32+\log (2))\right )+16 (1+(1+\log (2)) \log (16))-64 x \left (1+\frac {1}{8} \log (2) \left (1+\frac {(8+\log (2)) \log (256)}{\log (16)}\right )\right )+\log (x)\right )^2} \, dx+(40 (8+\log (2)) (1+\log (4))) \int \frac {1}{\left (x^4-16 x^3 \left (1+\frac {\log (2)}{8}\right )+72 x^2 \left (1+\frac {1}{72} \log (2) (32+\log (2))\right )+16 (1+(1+\log (2)) \log (16))-64 x \left (1+\frac {1}{8} \log (2) \left (1+\frac {(8+\log (2)) \log (256)}{\log (16)}\right )\right )+\log (x)\right )^2} \, dx \\ \end{align*}
Leaf count is larger than twice the leaf count of optimal. \(113\) vs. \(2(21)=42\).
Time = 5.48 (sec) , antiderivative size = 113, normalized size of antiderivative = 5.38 \[ \int \frac {-5+320 x-720 x^2+240 x^3-20 x^4+\left (680 x-320 x^2+30 x^3\right ) \log (2)+\left (80 x-10 x^2\right ) \log ^2(2)}{256 x-2048 x^2+6400 x^3-9728 x^4+7264 x^5-2432 x^6+400 x^7-32 x^8+x^9+\left (2048 x-12544 x^2+27648 x^3-25792 x^4+9344 x^5-1584 x^6+128 x^7-4 x^8\right ) \log (2)+\left (6144 x-26112 x^2+33888 x^3-13440 x^4+2352 x^5-192 x^6+6 x^7\right ) \log ^2(2)+\left (8192 x-19456 x^2+8576 x^3-1552 x^4+128 x^5-4 x^6\right ) \log ^3(2)+\left (4096 x-2048 x^2+384 x^3-32 x^4+x^5\right ) \log ^4(2)+\left (32 x-128 x^2+144 x^3-32 x^4+2 x^5+\left (128 x-272 x^2+64 x^3-4 x^4\right ) \log (2)+\left (128 x-32 x^2+2 x^3\right ) \log ^2(2)\right ) \log (x)+x \log ^2(x)} \, dx=-\frac {5 \left (-1-4 x^4+6 x^3 (8+\log (2))-2 x^2 \left (72+32 \log (2)+\log ^2(2)\right )+8 x \left (8+17 \log (2)+2 \log ^2(2)\right )\right )}{\left (1+4 x^4-6 x^3 (8+\log (2))-2 x (8+\log (2)) (4+\log (256))+2 x^2 \left (72+\log ^2(2)+2 \log (65536)\right )\right ) \left (\left (4+x^2-x (8+\log (2))+\log (256)\right )^2+\log (x)\right )} \]
[In]
[Out]
Leaf count of result is larger than twice the leaf count of optimal. \(68\) vs. \(2(21)=42\).
Time = 3.84 (sec) , antiderivative size = 69, normalized size of antiderivative = 3.29
| method | result | size |
| default | \(\frac {5}{x^{2} \ln \left (2\right )^{2}-2 x^{3} \ln \left (2\right )+x^{4}-16 x \ln \left (2\right )^{2}+32 x^{2} \ln \left (2\right )-16 x^{3}+64 \ln \left (2\right )^{2}-136 x \ln \left (2\right )+72 x^{2}+\ln \left (x \right )+64 \ln \left (2\right )-64 x +16}\) | \(69\) |
| risch | \(\frac {5}{x^{2} \ln \left (2\right )^{2}-2 x^{3} \ln \left (2\right )+x^{4}-16 x \ln \left (2\right )^{2}+32 x^{2} \ln \left (2\right )-16 x^{3}+64 \ln \left (2\right )^{2}-136 x \ln \left (2\right )+72 x^{2}+\ln \left (x \right )+64 \ln \left (2\right )-64 x +16}\) | \(69\) |
| parallelrisch | \(\frac {5}{x^{2} \ln \left (2\right )^{2}-2 x^{3} \ln \left (2\right )+x^{4}-16 x \ln \left (2\right )^{2}+32 x^{2} \ln \left (2\right )-16 x^{3}+64 \ln \left (2\right )^{2}-136 x \ln \left (2\right )+72 x^{2}+\ln \left (x \right )+64 \ln \left (2\right )-64 x +16}\) | \(69\) |
[In]
[Out]
Leaf count of result is larger than twice the leaf count of optimal. 54 vs. \(2 (21) = 42\).
Time = 0.27 (sec) , antiderivative size = 54, normalized size of antiderivative = 2.57 \[ \int \frac {-5+320 x-720 x^2+240 x^3-20 x^4+\left (680 x-320 x^2+30 x^3\right ) \log (2)+\left (80 x-10 x^2\right ) \log ^2(2)}{256 x-2048 x^2+6400 x^3-9728 x^4+7264 x^5-2432 x^6+400 x^7-32 x^8+x^9+\left (2048 x-12544 x^2+27648 x^3-25792 x^4+9344 x^5-1584 x^6+128 x^7-4 x^8\right ) \log (2)+\left (6144 x-26112 x^2+33888 x^3-13440 x^4+2352 x^5-192 x^6+6 x^7\right ) \log ^2(2)+\left (8192 x-19456 x^2+8576 x^3-1552 x^4+128 x^5-4 x^6\right ) \log ^3(2)+\left (4096 x-2048 x^2+384 x^3-32 x^4+x^5\right ) \log ^4(2)+\left (32 x-128 x^2+144 x^3-32 x^4+2 x^5+\left (128 x-272 x^2+64 x^3-4 x^4\right ) \log (2)+\left (128 x-32 x^2+2 x^3\right ) \log ^2(2)\right ) \log (x)+x \log ^2(x)} \, dx=\frac {5}{x^{4} - 16 \, x^{3} + {\left (x^{2} - 16 \, x + 64\right )} \log \left (2\right )^{2} + 72 \, x^{2} - 2 \, {\left (x^{3} - 16 \, x^{2} + 68 \, x - 32\right )} \log \left (2\right ) - 64 \, x + \log \left (x\right ) + 16} \]
[In]
[Out]
Leaf count of result is larger than twice the leaf count of optimal. 75 vs. \(2 (15) = 30\).
Time = 0.15 (sec) , antiderivative size = 75, normalized size of antiderivative = 3.57 \[ \int \frac {-5+320 x-720 x^2+240 x^3-20 x^4+\left (680 x-320 x^2+30 x^3\right ) \log (2)+\left (80 x-10 x^2\right ) \log ^2(2)}{256 x-2048 x^2+6400 x^3-9728 x^4+7264 x^5-2432 x^6+400 x^7-32 x^8+x^9+\left (2048 x-12544 x^2+27648 x^3-25792 x^4+9344 x^5-1584 x^6+128 x^7-4 x^8\right ) \log (2)+\left (6144 x-26112 x^2+33888 x^3-13440 x^4+2352 x^5-192 x^6+6 x^7\right ) \log ^2(2)+\left (8192 x-19456 x^2+8576 x^3-1552 x^4+128 x^5-4 x^6\right ) \log ^3(2)+\left (4096 x-2048 x^2+384 x^3-32 x^4+x^5\right ) \log ^4(2)+\left (32 x-128 x^2+144 x^3-32 x^4+2 x^5+\left (128 x-272 x^2+64 x^3-4 x^4\right ) \log (2)+\left (128 x-32 x^2+2 x^3\right ) \log ^2(2)\right ) \log (x)+x \log ^2(x)} \, dx=\frac {5}{x^{4} - 16 x^{3} - 2 x^{3} \log {\left (2 \right )} + x^{2} \log {\left (2 \right )}^{2} + 32 x^{2} \log {\left (2 \right )} + 72 x^{2} - 136 x \log {\left (2 \right )} - 64 x - 16 x \log {\left (2 \right )}^{2} + \log {\left (x \right )} + 16 + 64 \log {\left (2 \right )}^{2} + 64 \log {\left (2 \right )}} \]
[In]
[Out]
Leaf count of result is larger than twice the leaf count of optimal. 59 vs. \(2 (21) = 42\).
Time = 0.33 (sec) , antiderivative size = 59, normalized size of antiderivative = 2.81 \[ \int \frac {-5+320 x-720 x^2+240 x^3-20 x^4+\left (680 x-320 x^2+30 x^3\right ) \log (2)+\left (80 x-10 x^2\right ) \log ^2(2)}{256 x-2048 x^2+6400 x^3-9728 x^4+7264 x^5-2432 x^6+400 x^7-32 x^8+x^9+\left (2048 x-12544 x^2+27648 x^3-25792 x^4+9344 x^5-1584 x^6+128 x^7-4 x^8\right ) \log (2)+\left (6144 x-26112 x^2+33888 x^3-13440 x^4+2352 x^5-192 x^6+6 x^7\right ) \log ^2(2)+\left (8192 x-19456 x^2+8576 x^3-1552 x^4+128 x^5-4 x^6\right ) \log ^3(2)+\left (4096 x-2048 x^2+384 x^3-32 x^4+x^5\right ) \log ^4(2)+\left (32 x-128 x^2+144 x^3-32 x^4+2 x^5+\left (128 x-272 x^2+64 x^3-4 x^4\right ) \log (2)+\left (128 x-32 x^2+2 x^3\right ) \log ^2(2)\right ) \log (x)+x \log ^2(x)} \, dx=\frac {5}{x^{4} - 2 \, x^{3} {\left (\log \left (2\right ) + 8\right )} + {\left (\log \left (2\right )^{2} + 32 \, \log \left (2\right ) + 72\right )} x^{2} - 8 \, {\left (2 \, \log \left (2\right )^{2} + 17 \, \log \left (2\right ) + 8\right )} x + 64 \, \log \left (2\right )^{2} + 64 \, \log \left (2\right ) + \log \left (x\right ) + 16} \]
[In]
[Out]
Leaf count of result is larger than twice the leaf count of optimal. 68 vs. \(2 (21) = 42\).
Time = 0.30 (sec) , antiderivative size = 68, normalized size of antiderivative = 3.24 \[ \int \frac {-5+320 x-720 x^2+240 x^3-20 x^4+\left (680 x-320 x^2+30 x^3\right ) \log (2)+\left (80 x-10 x^2\right ) \log ^2(2)}{256 x-2048 x^2+6400 x^3-9728 x^4+7264 x^5-2432 x^6+400 x^7-32 x^8+x^9+\left (2048 x-12544 x^2+27648 x^3-25792 x^4+9344 x^5-1584 x^6+128 x^7-4 x^8\right ) \log (2)+\left (6144 x-26112 x^2+33888 x^3-13440 x^4+2352 x^5-192 x^6+6 x^7\right ) \log ^2(2)+\left (8192 x-19456 x^2+8576 x^3-1552 x^4+128 x^5-4 x^6\right ) \log ^3(2)+\left (4096 x-2048 x^2+384 x^3-32 x^4+x^5\right ) \log ^4(2)+\left (32 x-128 x^2+144 x^3-32 x^4+2 x^5+\left (128 x-272 x^2+64 x^3-4 x^4\right ) \log (2)+\left (128 x-32 x^2+2 x^3\right ) \log ^2(2)\right ) \log (x)+x \log ^2(x)} \, dx=\frac {5}{x^{4} - 2 \, x^{3} \log \left (2\right ) + x^{2} \log \left (2\right )^{2} - 16 \, x^{3} + 32 \, x^{2} \log \left (2\right ) - 16 \, x \log \left (2\right )^{2} + 72 \, x^{2} - 136 \, x \log \left (2\right ) + 64 \, \log \left (2\right )^{2} - 64 \, x + 64 \, \log \left (2\right ) + \log \left (x\right ) + 16} \]
[In]
[Out]
Timed out. \[ \int \frac {-5+320 x-720 x^2+240 x^3-20 x^4+\left (680 x-320 x^2+30 x^3\right ) \log (2)+\left (80 x-10 x^2\right ) \log ^2(2)}{256 x-2048 x^2+6400 x^3-9728 x^4+7264 x^5-2432 x^6+400 x^7-32 x^8+x^9+\left (2048 x-12544 x^2+27648 x^3-25792 x^4+9344 x^5-1584 x^6+128 x^7-4 x^8\right ) \log (2)+\left (6144 x-26112 x^2+33888 x^3-13440 x^4+2352 x^5-192 x^6+6 x^7\right ) \log ^2(2)+\left (8192 x-19456 x^2+8576 x^3-1552 x^4+128 x^5-4 x^6\right ) \log ^3(2)+\left (4096 x-2048 x^2+384 x^3-32 x^4+x^5\right ) \log ^4(2)+\left (32 x-128 x^2+144 x^3-32 x^4+2 x^5+\left (128 x-272 x^2+64 x^3-4 x^4\right ) \log (2)+\left (128 x-32 x^2+2 x^3\right ) \log ^2(2)\right ) \log (x)+x \log ^2(x)} \, dx=\int \frac {320\,x+\ln \left (2\right )\,\left (30\,x^3-320\,x^2+680\,x\right )+{\ln \left (2\right )}^2\,\left (80\,x-10\,x^2\right )-720\,x^2+240\,x^3-20\,x^4-5}{256\,x+x\,{\ln \left (x\right )}^2+{\ln \left (2\right )}^3\,\left (-4\,x^6+128\,x^5-1552\,x^4+8576\,x^3-19456\,x^2+8192\,x\right )+\ln \left (2\right )\,\left (-4\,x^8+128\,x^7-1584\,x^6+9344\,x^5-25792\,x^4+27648\,x^3-12544\,x^2+2048\,x\right )+{\ln \left (2\right )}^2\,\left (6\,x^7-192\,x^6+2352\,x^5-13440\,x^4+33888\,x^3-26112\,x^2+6144\,x\right )+\ln \left (x\right )\,\left (32\,x+\ln \left (2\right )\,\left (-4\,x^4+64\,x^3-272\,x^2+128\,x\right )+{\ln \left (2\right )}^2\,\left (2\,x^3-32\,x^2+128\,x\right )-128\,x^2+144\,x^3-32\,x^4+2\,x^5\right )-2048\,x^2+6400\,x^3-9728\,x^4+7264\,x^5-2432\,x^6+400\,x^7-32\,x^8+x^9+{\ln \left (2\right )}^4\,\left (x^5-32\,x^4+384\,x^3-2048\,x^2+4096\,x\right )} \,d x \]
[In]
[Out]