3.4.24 \(\int \frac {\sqrt [4]{a+b x^2}}{c+d x^2} \, dx\) [324]

Optimal. Leaf size=199 \[ \frac {2 \sqrt {a} \sqrt {b} \left (1+\frac {b x^2}{a}\right )^{3/4} F\left (\left .\frac {1}{2} \tan ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )\right |2\right )}{d \left (a+b x^2\right )^{3/4}}-\frac {\sqrt [4]{a} \sqrt {-\frac {b x^2}{a}} \Pi \left (-\frac {\sqrt {a} \sqrt {d}}{\sqrt {-b c+a d}};\left .\sin ^{-1}\left (\frac {\sqrt [4]{a+b x^2}}{\sqrt [4]{a}}\right )\right |-1\right )}{d x}-\frac {\sqrt [4]{a} \sqrt {-\frac {b x^2}{a}} \Pi \left (\frac {\sqrt {a} \sqrt {d}}{\sqrt {-b c+a d}};\left .\sin ^{-1}\left (\frac {\sqrt [4]{a+b x^2}}{\sqrt [4]{a}}\right )\right |-1\right )}{d x} \]

[Out]

2*(1+b*x^2/a)^(3/4)*(cos(1/2*arctan(x*b^(1/2)/a^(1/2)))^2)^(1/2)/cos(1/2*arctan(x*b^(1/2)/a^(1/2)))*EllipticF(
sin(1/2*arctan(x*b^(1/2)/a^(1/2))),2^(1/2))*a^(1/2)*b^(1/2)/d/(b*x^2+a)^(3/4)-a^(1/4)*EllipticPi((b*x^2+a)^(1/
4)/a^(1/4),-a^(1/2)*d^(1/2)/(a*d-b*c)^(1/2),I)*(-b*x^2/a)^(1/2)/d/x-a^(1/4)*EllipticPi((b*x^2+a)^(1/4)/a^(1/4)
,a^(1/2)*d^(1/2)/(a*d-b*c)^(1/2),I)*(-b*x^2/a)^(1/2)/d/x

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 199, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {411, 239, 237, 410, 109, 418, 1232} \begin {gather*} -\frac {\sqrt [4]{a} \sqrt {-\frac {b x^2}{a}} \Pi \left (-\frac {\sqrt {a} \sqrt {d}}{\sqrt {a d-b c}};\left .\text {ArcSin}\left (\frac {\sqrt [4]{b x^2+a}}{\sqrt [4]{a}}\right )\right |-1\right )}{d x}-\frac {\sqrt [4]{a} \sqrt {-\frac {b x^2}{a}} \Pi \left (\frac {\sqrt {a} \sqrt {d}}{\sqrt {a d-b c}};\left .\text {ArcSin}\left (\frac {\sqrt [4]{b x^2+a}}{\sqrt [4]{a}}\right )\right |-1\right )}{d x}+\frac {2 \sqrt {a} \sqrt {b} \left (\frac {b x^2}{a}+1\right )^{3/4} F\left (\left .\frac {1}{2} \text {ArcTan}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )\right |2\right )}{d \left (a+b x^2\right )^{3/4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2)^(1/4)/(c + d*x^2),x]

[Out]

(2*Sqrt[a]*Sqrt[b]*(1 + (b*x^2)/a)^(3/4)*EllipticF[ArcTan[(Sqrt[b]*x)/Sqrt[a]]/2, 2])/(d*(a + b*x^2)^(3/4)) -
(a^(1/4)*Sqrt[-((b*x^2)/a)]*EllipticPi[-((Sqrt[a]*Sqrt[d])/Sqrt[-(b*c) + a*d]), ArcSin[(a + b*x^2)^(1/4)/a^(1/
4)], -1])/(d*x) - (a^(1/4)*Sqrt[-((b*x^2)/a)]*EllipticPi[(Sqrt[a]*Sqrt[d])/Sqrt[-(b*c) + a*d], ArcSin[(a + b*x
^2)^(1/4)/a^(1/4)], -1])/(d*x)

Rule 109

Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(3/4)), x_Symbol] :> Dist[-4, Subst[
Int[1/((b*e - a*f - b*x^4)*Sqrt[c - d*(e/f) + d*(x^4/f)]), x], x, (e + f*x)^(1/4)], x] /; FreeQ[{a, b, c, d, e
, f}, x] && GtQ[-f/(d*e - c*f), 0]

Rule 237

Int[((a_) + (b_.)*(x_)^2)^(-3/4), x_Symbol] :> Simp[(2/(a^(3/4)*Rt[b/a, 2]))*EllipticF[(1/2)*ArcTan[Rt[b/a, 2]
*x], 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]

Rule 239

Int[((a_) + (b_.)*(x_)^2)^(-3/4), x_Symbol] :> Dist[(1 + b*(x^2/a))^(3/4)/(a + b*x^2)^(3/4), Int[1/(1 + b*(x^2
/a))^(3/4), x], x] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 410

Int[1/(((a_) + (b_.)*(x_)^2)^(3/4)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Dist[Sqrt[(-b)*(x^2/a)]/(2*x), Subst[I
nt[1/(Sqrt[(-b)*(x/a)]*(a + b*x)^(3/4)*(c + d*x)), x], x, x^2], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d,
 0]

Rule 411

Int[((a_) + (b_.)*(x_)^2)^(p_.)/((c_) + (d_.)*(x_)^2), x_Symbol] :> Dist[b/d, Int[(a + b*x^2)^(p - 1), x], x]
- Dist[(b*c - a*d)/d, Int[(a + b*x^2)^(p - 1)/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d,
0] && GtQ[p, 0] && (EqQ[p, 1/2] || EqQ[Denominator[p], 4])

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^4]*((c_) + (d_.)*(x_)^4)), x_Symbol] :> Dist[1/(2*c), Int[1/(Sqrt[a + b*x^4]*(1
- Rt[-d/c, 2]*x^2)), x], x] + Dist[1/(2*c), Int[1/(Sqrt[a + b*x^4]*(1 + Rt[-d/c, 2]*x^2)), x], x] /; FreeQ[{a,
 b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 1232

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[-c/a, 4]}, Simp[(1/(d*Sqrt[
a]*q))*EllipticPi[-e/(d*q^2), ArcSin[q*x], -1], x]] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && GtQ[a, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt [4]{a+b x^2}}{c+d x^2} \, dx &=\frac {b \int \frac {1}{\left (a+b x^2\right )^{3/4}} \, dx}{d}-\frac {(b c-a d) \int \frac {1}{\left (a+b x^2\right )^{3/4} \left (c+d x^2\right )} \, dx}{d}\\ &=-\frac {\left ((b c-a d) \sqrt {-\frac {b x^2}{a}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-\frac {b x}{a}} (a+b x)^{3/4} (c+d x)} \, dx,x,x^2\right )}{2 d x}+\frac {\left (b \left (1+\frac {b x^2}{a}\right )^{3/4}\right ) \int \frac {1}{\left (1+\frac {b x^2}{a}\right )^{3/4}} \, dx}{d \left (a+b x^2\right )^{3/4}}\\ &=\frac {2 \sqrt {a} \sqrt {b} \left (1+\frac {b x^2}{a}\right )^{3/4} F\left (\left .\frac {1}{2} \tan ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )\right |2\right )}{d \left (a+b x^2\right )^{3/4}}+\frac {\left (2 (b c-a d) \sqrt {-\frac {b x^2}{a}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^4}{a}} \left (-b c+a d-d x^4\right )} \, dx,x,\sqrt [4]{a+b x^2}\right )}{d x}\\ &=\frac {2 \sqrt {a} \sqrt {b} \left (1+\frac {b x^2}{a}\right )^{3/4} F\left (\left .\frac {1}{2} \tan ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )\right |2\right )}{d \left (a+b x^2\right )^{3/4}}-\frac {\sqrt {-\frac {b x^2}{a}} \text {Subst}\left (\int \frac {1}{\left (1-\frac {\sqrt {d} x^2}{\sqrt {-b c+a d}}\right ) \sqrt {1-\frac {x^4}{a}}} \, dx,x,\sqrt [4]{a+b x^2}\right )}{d x}-\frac {\sqrt {-\frac {b x^2}{a}} \text {Subst}\left (\int \frac {1}{\left (1+\frac {\sqrt {d} x^2}{\sqrt {-b c+a d}}\right ) \sqrt {1-\frac {x^4}{a}}} \, dx,x,\sqrt [4]{a+b x^2}\right )}{d x}\\ &=\frac {2 \sqrt {a} \sqrt {b} \left (1+\frac {b x^2}{a}\right )^{3/4} F\left (\left .\frac {1}{2} \tan ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )\right |2\right )}{d \left (a+b x^2\right )^{3/4}}-\frac {\sqrt [4]{a} \sqrt {-\frac {b x^2}{a}} \Pi \left (-\frac {\sqrt {a} \sqrt {d}}{\sqrt {-b c+a d}};\left .\sin ^{-1}\left (\frac {\sqrt [4]{a+b x^2}}{\sqrt [4]{a}}\right )\right |-1\right )}{d x}-\frac {\sqrt [4]{a} \sqrt {-\frac {b x^2}{a}} \Pi \left (\frac {\sqrt {a} \sqrt {d}}{\sqrt {-b c+a d}};\left .\sin ^{-1}\left (\frac {\sqrt [4]{a+b x^2}}{\sqrt [4]{a}}\right )\right |-1\right )}{d x}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.
time = 7.41, size = 160, normalized size = 0.80 \begin {gather*} \frac {6 a c x \sqrt [4]{a+b x^2} F_1\left (\frac {1}{2};-\frac {1}{4},1;\frac {3}{2};-\frac {b x^2}{a},-\frac {d x^2}{c}\right )}{\left (c+d x^2\right ) \left (6 a c F_1\left (\frac {1}{2};-\frac {1}{4},1;\frac {3}{2};-\frac {b x^2}{a},-\frac {d x^2}{c}\right )+x^2 \left (-4 a d F_1\left (\frac {3}{2};-\frac {1}{4},2;\frac {5}{2};-\frac {b x^2}{a},-\frac {d x^2}{c}\right )+b c F_1\left (\frac {3}{2};\frac {3}{4},1;\frac {5}{2};-\frac {b x^2}{a},-\frac {d x^2}{c}\right )\right )\right )} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*x^2)^(1/4)/(c + d*x^2),x]

[Out]

(6*a*c*x*(a + b*x^2)^(1/4)*AppellF1[1/2, -1/4, 1, 3/2, -((b*x^2)/a), -((d*x^2)/c)])/((c + d*x^2)*(6*a*c*Appell
F1[1/2, -1/4, 1, 3/2, -((b*x^2)/a), -((d*x^2)/c)] + x^2*(-4*a*d*AppellF1[3/2, -1/4, 2, 5/2, -((b*x^2)/a), -((d
*x^2)/c)] + b*c*AppellF1[3/2, 3/4, 1, 5/2, -((b*x^2)/a), -((d*x^2)/c)])))

________________________________________________________________________________________

Maple [F]
time = 0.03, size = 0, normalized size = 0.00 \[\int \frac {\left (b \,x^{2}+a \right )^{\frac {1}{4}}}{d \,x^{2}+c}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^(1/4)/(d*x^2+c),x)

[Out]

int((b*x^2+a)^(1/4)/(d*x^2+c),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(1/4)/(d*x^2+c),x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)^(1/4)/(d*x^2 + c), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(1/4)/(d*x^2+c),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt [4]{a + b x^{2}}}{c + d x^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**(1/4)/(d*x**2+c),x)

[Out]

Integral((a + b*x**2)**(1/4)/(c + d*x**2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(1/4)/(d*x^2+c),x, algorithm="giac")

[Out]

integrate((b*x^2 + a)^(1/4)/(d*x^2 + c), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (b\,x^2+a\right )}^{1/4}}{d\,x^2+c} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^2)^(1/4)/(c + d*x^2),x)

[Out]

int((a + b*x^2)^(1/4)/(c + d*x^2), x)

________________________________________________________________________________________