3.3.89 \(\int \frac {\sqrt {-c+d x^2}}{\sqrt {-a-b x^2}} \, dx\) [289]

Optimal. Leaf size=198 \[ -\frac {\sqrt {c} \sqrt {d} \sqrt {-a-b x^2} \sqrt {1-\frac {d x^2}{c}} E\left (\sin ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|-\frac {b c}{a d}\right )}{b \sqrt {1+\frac {b x^2}{a}} \sqrt {-c+d x^2}}-\frac {\sqrt {c} (b c+a d) \sqrt {1+\frac {b x^2}{a}} \sqrt {1-\frac {d x^2}{c}} F\left (\sin ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|-\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {-a-b x^2} \sqrt {-c+d x^2}} \]

[Out]

-EllipticE(x*d^(1/2)/c^(1/2),(-b*c/a/d)^(1/2))*c^(1/2)*d^(1/2)*(-b*x^2-a)^(1/2)*(1-d*x^2/c)^(1/2)/b/(1+b*x^2/a
)^(1/2)/(d*x^2-c)^(1/2)-(a*d+b*c)*EllipticF(x*d^(1/2)/c^(1/2),(-b*c/a/d)^(1/2))*c^(1/2)*(1+b*x^2/a)^(1/2)*(1-d
*x^2/c)^(1/2)/b/d^(1/2)/(-b*x^2-a)^(1/2)/(d*x^2-c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 198, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {434, 438, 437, 435, 432, 430} \begin {gather*} -\frac {\sqrt {c} \sqrt {\frac {b x^2}{a}+1} \sqrt {1-\frac {d x^2}{c}} (a d+b c) F\left (\text {ArcSin}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|-\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {-a-b x^2} \sqrt {d x^2-c}}-\frac {\sqrt {c} \sqrt {d} \sqrt {-a-b x^2} \sqrt {1-\frac {d x^2}{c}} E\left (\text {ArcSin}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|-\frac {b c}{a d}\right )}{b \sqrt {\frac {b x^2}{a}+1} \sqrt {d x^2-c}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[-c + d*x^2]/Sqrt[-a - b*x^2],x]

[Out]

-((Sqrt[c]*Sqrt[d]*Sqrt[-a - b*x^2]*Sqrt[1 - (d*x^2)/c]*EllipticE[ArcSin[(Sqrt[d]*x)/Sqrt[c]], -((b*c)/(a*d))]
)/(b*Sqrt[1 + (b*x^2)/a]*Sqrt[-c + d*x^2])) - (Sqrt[c]*(b*c + a*d)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 - (d*x^2)/c]*Ell
ipticF[ArcSin[(Sqrt[d]*x)/Sqrt[c]], -((b*c)/(a*d))])/(b*Sqrt[d]*Sqrt[-a - b*x^2]*Sqrt[-c + d*x^2])

Rule 430

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])

Rule 432

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 434

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[b/d, Int[Sqrt[c + d*x^2]/Sqrt[a + b
*x^2], x], x] - Dist[(b*c - a*d)/d, Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x]
&& PosQ[d/c] && NegQ[b/a]

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 437

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]
, Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 438

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*x^2]
, Int[Sqrt[a + b*x^2]/Sqrt[1 + (d/c)*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] &&  !GtQ[c, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {-c+d x^2}}{\sqrt {-a-b x^2}} \, dx &=-\frac {d \int \frac {\sqrt {-a-b x^2}}{\sqrt {-c+d x^2}} \, dx}{b}-\frac {(b c+a d) \int \frac {1}{\sqrt {-a-b x^2} \sqrt {-c+d x^2}} \, dx}{b}\\ &=-\frac {\left (d \sqrt {1-\frac {d x^2}{c}}\right ) \int \frac {\sqrt {-a-b x^2}}{\sqrt {1-\frac {d x^2}{c}}} \, dx}{b \sqrt {-c+d x^2}}-\frac {\left ((b c+a d) \sqrt {1-\frac {d x^2}{c}}\right ) \int \frac {1}{\sqrt {-a-b x^2} \sqrt {1-\frac {d x^2}{c}}} \, dx}{b \sqrt {-c+d x^2}}\\ &=-\frac {\left (d \sqrt {-a-b x^2} \sqrt {1-\frac {d x^2}{c}}\right ) \int \frac {\sqrt {1+\frac {b x^2}{a}}}{\sqrt {1-\frac {d x^2}{c}}} \, dx}{b \sqrt {1+\frac {b x^2}{a}} \sqrt {-c+d x^2}}-\frac {\left ((b c+a d) \sqrt {1+\frac {b x^2}{a}} \sqrt {1-\frac {d x^2}{c}}\right ) \int \frac {1}{\sqrt {1+\frac {b x^2}{a}} \sqrt {1-\frac {d x^2}{c}}} \, dx}{b \sqrt {-a-b x^2} \sqrt {-c+d x^2}}\\ &=-\frac {\sqrt {c} \sqrt {d} \sqrt {-a-b x^2} \sqrt {1-\frac {d x^2}{c}} E\left (\sin ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|-\frac {b c}{a d}\right )}{b \sqrt {1+\frac {b x^2}{a}} \sqrt {-c+d x^2}}-\frac {\sqrt {c} (b c+a d) \sqrt {1+\frac {b x^2}{a}} \sqrt {1-\frac {d x^2}{c}} F\left (\sin ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|-\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {-a-b x^2} \sqrt {-c+d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.66, size = 93, normalized size = 0.47 \begin {gather*} \frac {\sqrt {\frac {a+b x^2}{a}} \sqrt {-c+d x^2} E\left (\sin ^{-1}\left (\sqrt {-\frac {b}{a}} x\right )|-\frac {a d}{b c}\right )}{\sqrt {-\frac {b}{a}} \sqrt {-a-b x^2} \sqrt {\frac {c-d x^2}{c}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[-c + d*x^2]/Sqrt[-a - b*x^2],x]

[Out]

(Sqrt[(a + b*x^2)/a]*Sqrt[-c + d*x^2]*EllipticE[ArcSin[Sqrt[-(b/a)]*x], -((a*d)/(b*c))])/(Sqrt[-(b/a)]*Sqrt[-a
 - b*x^2]*Sqrt[(c - d*x^2)/c])

________________________________________________________________________________________

Maple [A]
time = 0.08, size = 166, normalized size = 0.84

method result size
default \(\frac {\left (-a d \EllipticF \left (x \sqrt {\frac {d}{c}}, \sqrt {-\frac {b c}{a d}}\right )-c \EllipticF \left (x \sqrt {\frac {d}{c}}, \sqrt {-\frac {b c}{a d}}\right ) b +a d \EllipticE \left (x \sqrt {\frac {d}{c}}, \sqrt {-\frac {b c}{a d}}\right )\right ) \sqrt {d \,x^{2}-c}\, \sqrt {-b \,x^{2}-a}\, \sqrt {\frac {-d \,x^{2}+c}{c}}\, \sqrt {\frac {b \,x^{2}+a}{a}}}{\left (-b d \,x^{4}-a d \,x^{2}+c \,x^{2} b +a c \right ) \sqrt {\frac {d}{c}}\, b}\) \(166\)
elliptic \(\frac {\sqrt {\left (b \,x^{2}+a \right ) \left (-d \,x^{2}+c \right )}\, \left (-\frac {c \sqrt {1-\frac {d \,x^{2}}{c}}\, \sqrt {1+\frac {b \,x^{2}}{a}}\, \EllipticF \left (x \sqrt {\frac {d}{c}}, \sqrt {-1-\frac {-a d +b c}{a d}}\right )}{\sqrt {\frac {d}{c}}\, \sqrt {-b d \,x^{4}-a d \,x^{2}+c \,x^{2} b +a c}}-\frac {d a \sqrt {1-\frac {d \,x^{2}}{c}}\, \sqrt {1+\frac {b \,x^{2}}{a}}\, \left (\EllipticF \left (x \sqrt {\frac {d}{c}}, \sqrt {-1-\frac {-a d +b c}{a d}}\right )-\EllipticE \left (x \sqrt {\frac {d}{c}}, \sqrt {-1-\frac {-a d +b c}{a d}}\right )\right )}{\sqrt {\frac {d}{c}}\, \sqrt {-b d \,x^{4}-a d \,x^{2}+c \,x^{2} b +a c}\, b}\right )}{\sqrt {-b \,x^{2}-a}\, \sqrt {d \,x^{2}-c}}\) \(263\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^2-c)^(1/2)/(-b*x^2-a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

(-a*d*EllipticF(x*(d/c)^(1/2),(-b*c/a/d)^(1/2))-c*EllipticF(x*(d/c)^(1/2),(-b*c/a/d)^(1/2))*b+a*d*EllipticE(x*
(d/c)^(1/2),(-b*c/a/d)^(1/2)))*(d*x^2-c)^(1/2)*(-b*x^2-a)^(1/2)*((-d*x^2+c)/c)^(1/2)*((b*x^2+a)/a)^(1/2)/(-b*d
*x^4-a*d*x^2+b*c*x^2+a*c)/(d/c)^(1/2)/b

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2-c)^(1/2)/(-b*x^2-a)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(d*x^2 - c)/sqrt(-b*x^2 - a), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2-c)^(1/2)/(-b*x^2-a)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {- c + d x^{2}}}{\sqrt {- a - b x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**2-c)**(1/2)/(-b*x**2-a)**(1/2),x)

[Out]

Integral(sqrt(-c + d*x**2)/sqrt(-a - b*x**2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2-c)^(1/2)/(-b*x^2-a)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(d*x^2 - c)/sqrt(-b*x^2 - a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {d\,x^2-c}}{\sqrt {-b\,x^2-a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^2 - c)^(1/2)/(- a - b*x^2)^(1/2),x)

[Out]

int((d*x^2 - c)^(1/2)/(- a - b*x^2)^(1/2), x)

________________________________________________________________________________________