3.3.70 \(\int \frac {\sqrt {a-b x^2}}{\sqrt {c+d x^2}} \, dx\) [270]

Optimal. Leaf size=189 \[ -\frac {\sqrt {a} \sqrt {b} \sqrt {1-\frac {b x^2}{a}} \sqrt {c+d x^2} E\left (\sin ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|-\frac {a d}{b c}\right )}{d \sqrt {a-b x^2} \sqrt {1+\frac {d x^2}{c}}}+\frac {\sqrt {a} (b c+a d) \sqrt {1-\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} F\left (\sin ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|-\frac {a d}{b c}\right )}{\sqrt {b} d \sqrt {a-b x^2} \sqrt {c+d x^2}} \]

[Out]

-EllipticE(x*b^(1/2)/a^(1/2),(-a*d/b/c)^(1/2))*a^(1/2)*b^(1/2)*(1-b*x^2/a)^(1/2)*(d*x^2+c)^(1/2)/d/(-b*x^2+a)^
(1/2)/(1+d*x^2/c)^(1/2)+(a*d+b*c)*EllipticF(x*b^(1/2)/a^(1/2),(-a*d/b/c)^(1/2))*a^(1/2)*(1-b*x^2/a)^(1/2)*(1+d
*x^2/c)^(1/2)/d/b^(1/2)/(-b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 189, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {434, 438, 437, 435, 432, 430} \begin {gather*} \frac {\sqrt {a} \sqrt {1-\frac {b x^2}{a}} \sqrt {\frac {d x^2}{c}+1} (a d+b c) F\left (\text {ArcSin}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|-\frac {a d}{b c}\right )}{\sqrt {b} d \sqrt {a-b x^2} \sqrt {c+d x^2}}-\frac {\sqrt {a} \sqrt {b} \sqrt {1-\frac {b x^2}{a}} \sqrt {c+d x^2} E\left (\text {ArcSin}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|-\frac {a d}{b c}\right )}{d \sqrt {a-b x^2} \sqrt {\frac {d x^2}{c}+1}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a - b*x^2]/Sqrt[c + d*x^2],x]

[Out]

-((Sqrt[a]*Sqrt[b]*Sqrt[1 - (b*x^2)/a]*Sqrt[c + d*x^2]*EllipticE[ArcSin[(Sqrt[b]*x)/Sqrt[a]], -((a*d)/(b*c))])
/(d*Sqrt[a - b*x^2]*Sqrt[1 + (d*x^2)/c])) + (Sqrt[a]*(b*c + a*d)*Sqrt[1 - (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*Ellip
ticF[ArcSin[(Sqrt[b]*x)/Sqrt[a]], -((a*d)/(b*c))])/(Sqrt[b]*d*Sqrt[a - b*x^2]*Sqrt[c + d*x^2])

Rule 430

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])

Rule 432

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 434

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[b/d, Int[Sqrt[c + d*x^2]/Sqrt[a + b
*x^2], x], x] - Dist[(b*c - a*d)/d, Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x]
&& PosQ[d/c] && NegQ[b/a]

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 437

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]
, Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 438

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*x^2]
, Int[Sqrt[a + b*x^2]/Sqrt[1 + (d/c)*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] &&  !GtQ[c, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {a-b x^2}}{\sqrt {c+d x^2}} \, dx &=-\frac {b \int \frac {\sqrt {c+d x^2}}{\sqrt {a-b x^2}} \, dx}{d}+\frac {(b c+a d) \int \frac {1}{\sqrt {a-b x^2} \sqrt {c+d x^2}} \, dx}{d}\\ &=-\frac {\left (b \sqrt {1-\frac {b x^2}{a}}\right ) \int \frac {\sqrt {c+d x^2}}{\sqrt {1-\frac {b x^2}{a}}} \, dx}{d \sqrt {a-b x^2}}+\frac {\left ((b c+a d) \sqrt {1+\frac {d x^2}{c}}\right ) \int \frac {1}{\sqrt {a-b x^2} \sqrt {1+\frac {d x^2}{c}}} \, dx}{d \sqrt {c+d x^2}}\\ &=-\frac {\left (b \sqrt {1-\frac {b x^2}{a}} \sqrt {c+d x^2}\right ) \int \frac {\sqrt {1+\frac {d x^2}{c}}}{\sqrt {1-\frac {b x^2}{a}}} \, dx}{d \sqrt {a-b x^2} \sqrt {1+\frac {d x^2}{c}}}+\frac {\left ((b c+a d) \sqrt {1-\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}}\right ) \int \frac {1}{\sqrt {1-\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}}} \, dx}{d \sqrt {a-b x^2} \sqrt {c+d x^2}}\\ &=-\frac {\sqrt {a} \sqrt {b} \sqrt {1-\frac {b x^2}{a}} \sqrt {c+d x^2} E\left (\sin ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|-\frac {a d}{b c}\right )}{d \sqrt {a-b x^2} \sqrt {1+\frac {d x^2}{c}}}+\frac {\sqrt {a} (b c+a d) \sqrt {1-\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} F\left (\sin ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|-\frac {a d}{b c}\right )}{\sqrt {b} d \sqrt {a-b x^2} \sqrt {c+d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.87, size = 89, normalized size = 0.47 \begin {gather*} \frac {\sqrt {a-b x^2} \sqrt {\frac {c+d x^2}{c}} E\left (\sin ^{-1}\left (\sqrt {-\frac {d}{c}} x\right )|-\frac {b c}{a d}\right )}{\sqrt {-\frac {d}{c}} \sqrt {\frac {a-b x^2}{a}} \sqrt {c+d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a - b*x^2]/Sqrt[c + d*x^2],x]

[Out]

(Sqrt[a - b*x^2]*Sqrt[(c + d*x^2)/c]*EllipticE[ArcSin[Sqrt[-(d/c)]*x], -((b*c)/(a*d))])/(Sqrt[-(d/c)]*Sqrt[(a
- b*x^2)/a]*Sqrt[c + d*x^2])

________________________________________________________________________________________

Maple [A]
time = 0.08, size = 161, normalized size = 0.85

method result size
default \(\frac {\sqrt {-b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}\, \sqrt {\frac {-b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, \left (a \EllipticF \left (x \sqrt {\frac {b}{a}}, \sqrt {-\frac {a d}{b c}}\right ) d +b c \EllipticF \left (x \sqrt {\frac {b}{a}}, \sqrt {-\frac {a d}{b c}}\right )-b c \EllipticE \left (x \sqrt {\frac {b}{a}}, \sqrt {-\frac {a d}{b c}}\right )\right )}{\left (-b d \,x^{4}+a d \,x^{2}-c \,x^{2} b +a c \right ) \sqrt {\frac {b}{a}}\, d}\) \(161\)
elliptic \(\frac {\sqrt {\left (-b \,x^{2}+a \right ) \left (d \,x^{2}+c \right )}\, \left (\frac {a \sqrt {1-\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {\frac {b}{a}}, \sqrt {-1-\frac {a d -b c}{c b}}\right )}{\sqrt {\frac {b}{a}}\, \sqrt {-b d \,x^{4}+a d \,x^{2}-c \,x^{2} b +a c}}+\frac {b c \sqrt {1-\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {\frac {b}{a}}, \sqrt {-1-\frac {a d -b c}{c b}}\right )-\EllipticE \left (x \sqrt {\frac {b}{a}}, \sqrt {-1-\frac {a d -b c}{c b}}\right )\right )}{\sqrt {\frac {b}{a}}\, \sqrt {-b d \,x^{4}+a d \,x^{2}-c \,x^{2} b +a c}\, d}\right )}{\sqrt {-b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}}\) \(257\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

(-b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)*((-b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*(a*EllipticF(x*(b/a)^(1/2),(-a*d/b/c
)^(1/2))*d+b*c*EllipticF(x*(b/a)^(1/2),(-a*d/b/c)^(1/2))-b*c*EllipticE(x*(b/a)^(1/2),(-a*d/b/c)^(1/2)))/(-b*d*
x^4+a*d*x^2-b*c*x^2+a*c)/(b/a)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-b*x^2 + a)/sqrt(d*x^2 + c), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {a - b x^{2}}}{\sqrt {c + d x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x**2+a)**(1/2)/(d*x**2+c)**(1/2),x)

[Out]

Integral(sqrt(a - b*x**2)/sqrt(c + d*x**2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-b*x^2 + a)/sqrt(d*x^2 + c), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {a-b\,x^2}}{\sqrt {d\,x^2+c}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a - b*x^2)^(1/2)/(c + d*x^2)^(1/2),x)

[Out]

int((a - b*x^2)^(1/2)/(c + d*x^2)^(1/2), x)

________________________________________________________________________________________