3.3.10 \(\int \frac {\sqrt {a+b x^2}}{(c+d x^2)^{3/2}} \, dx\) [210]

Optimal. Leaf size=84 \[ \frac {\sqrt {a+b x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{\sqrt {c} \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}} \]

[Out]

(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticE(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^(1/2))*(b*x^
2+a)^(1/2)/c^(1/2)/d^(1/2)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)/(d*x^2+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 84, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {422} \begin {gather*} \frac {\sqrt {a+b x^2} E\left (\text {ArcTan}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{\sqrt {c} \sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2),x]

[Out]

(Sqrt[a + b*x^2]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(Sqrt[c]*Sqrt[d]*Sqrt[(c*(a + b*x^2)
)/(a*(c + d*x^2))]*Sqrt[c + d*x^2])

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+b x^2}}{\left (c+d x^2\right )^{3/2}} \, dx &=\frac {\sqrt {a+b x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{\sqrt {c} \sqrt {d} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {c+d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 2.06, size = 136, normalized size = 1.62 \begin {gather*} \frac {\frac {x \left (a+b x^2\right )}{c}+\frac {i a \sqrt {\frac {b}{a}} \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} \left (E\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )-F\left (i \sinh ^{-1}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )\right )}{d}}{\sqrt {a+b x^2} \sqrt {c+d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2),x]

[Out]

((x*(a + b*x^2))/c + (I*a*Sqrt[b/a]*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*(EllipticE[I*ArcSinh[Sqrt[b/a]*x],
 (a*d)/(b*c)] - EllipticF[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)]))/d)/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2])

________________________________________________________________________________________

Maple [A]
time = 0.08, size = 188, normalized size = 2.24

method result size
default \(\frac {\sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}\, \left (\sqrt {-\frac {b}{a}}\, b d \,x^{3}+\sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) \sqrt {\frac {b \,x^{2}+a}{a}}\, b c -\sqrt {\frac {d \,x^{2}+c}{c}}\, \EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) \sqrt {\frac {b \,x^{2}+a}{a}}\, b c +\sqrt {-\frac {b}{a}}\, a d x \right )}{\left (b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c \right ) d c \sqrt {-\frac {b}{a}}}\) \(188\)
elliptic \(\frac {\sqrt {\left (b \,x^{2}+a \right ) \left (d \,x^{2}+c \right )}\, \left (\frac {\left (b d \,x^{2}+a d \right ) x}{d c \sqrt {\left (x^{2}+\frac {c}{d}\right ) \left (b d \,x^{2}+a d \right )}}+\frac {\left (\frac {b}{d}+\frac {a d -b c}{c d}-\frac {a}{c}\right ) \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}}+\frac {b \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (\EllipticF \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )-\EllipticE \left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {a d +b c}{c b}}\right )\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+c \,x^{2} b +a c}\, d}\right )}{\sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}}\) \(313\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^(1/2)/(d*x^2+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

(b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)*((-b/a)^(1/2)*b*d*x^3+((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(
1/2))*((b*x^2+a)/a)^(1/2)*b*c-((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*((b*x^2+a)/a)^(1/2
)*b*c+(-b/a)^(1/2)*a*d*x)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)/d/c/(-b/a)^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(1/2)/(d*x^2+c)^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*x^2 + a)/(d*x^2 + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(1/2)/(d*x^2+c)^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {a + b x^{2}}}{\left (c + d x^{2}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**(1/2)/(d*x**2+c)**(3/2),x)

[Out]

Integral(sqrt(a + b*x**2)/(c + d*x**2)**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(1/2)/(d*x^2+c)^(3/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*x^2 + a)/(d*x^2 + c)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {b\,x^2+a}}{{\left (d\,x^2+c\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^2)^(1/2)/(c + d*x^2)^(3/2),x)

[Out]

int((a + b*x^2)^(1/2)/(c + d*x^2)^(3/2), x)

________________________________________________________________________________________