3.5.52 \(\int \frac {\csc (x) \sec (x) (1+\sqrt [3]{1-8 \tan ^2(x)})}{(1-8 \tan ^2(x))^{2/3}} \, dx\) [452]

Optimal. Leaf size=27 \[ -\log (\tan (x))+\frac {3}{2} \log \left (1-\sqrt [3]{1-8 \tan ^2(x)}\right ) \]

[Out]

-ln(tan(x))+3/2*ln(1-(1-8*tan(x)^2)^(1/3))

________________________________________________________________________________________

Rubi [A]
time = 0.63, antiderivative size = 35, normalized size of antiderivative = 1.30, number of steps used = 15, number of rules used = 9, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.290, Rules used = {4451, 6857, 528, 455, 59, 632, 210, 31, 57} \begin {gather*} \frac {3}{2} \log \left (1-\sqrt [3]{9-8 \sec ^2(x)}\right )-\frac {1}{2} \log \left (1-\sec ^2(x)\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Csc[x]*Sec[x]*(1 + (1 - 8*Tan[x]^2)^(1/3)))/(1 - 8*Tan[x]^2)^(2/3),x]

[Out]

-1/2*Log[1 - Sec[x]^2] + (3*Log[1 - (9 - 8*Sec[x]^2)^(1/3)])/2

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 57

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(1/3)), x_Symbol] :> With[{q = Rt[(b*c - a*d)/b, 3]}, Simp[-L
og[RemoveContent[a + b*x, x]]/(2*b*q), x] + (Dist[3/(2*b), Subst[Int[1/(q^2 + q*x + x^2), x], x, (c + d*x)^(1/
3)], x] - Dist[3/(2*b*q), Subst[Int[1/(q - x), x], x, (c + d*x)^(1/3)], x])] /; FreeQ[{a, b, c, d}, x] && PosQ
[(b*c - a*d)/b]

Rule 59

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(2/3)), x_Symbol] :> With[{q = Rt[(b*c - a*d)/b, 3]}, Simp[-L
og[RemoveContent[a + b*x, x]]/(2*b*q^2), x] + (-Dist[3/(2*b*q), Subst[Int[1/(q^2 + q*x + x^2), x], x, (c + d*x
)^(1/3)], x] - Dist[3/(2*b*q^2), Subst[Int[1/(q - x), x], x, (c + d*x)^(1/3)], x])] /; FreeQ[{a, b, c, d}, x]
&& PosQ[(b*c - a*d)/b]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 455

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rule 528

Int[(x_)^(m_.)*((c_) + (d_.)*(x_)^(mn_.))^(q_.)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[x^(m - n*q)*
(a + b*x^n)^p*(d + c*x^n)^q, x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[mn, -n] && IntegerQ[q] && (PosQ[n] |
|  !IntegerQ[p])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 4451

Int[(u_)*(F_)[(c_.)*((a_.) + (b_.)*(x_))]^(n_), x_Symbol] :> With[{d = FreeFactors[Cos[c*(a + b*x)], x]}, Dist
[-d/(b*c), Subst[Int[SubstFor[(1 - d^2*x^2)^((n - 1)/2), Cos[c*(a + b*x)]/d, u, x], x], x, Cos[c*(a + b*x)]/d]
, x] /; FunctionOfQ[Cos[c*(a + b*x)]/d, u, x]] /; FreeQ[{a, b, c}, x] && IntegerQ[(n - 1)/2] && NonsumQ[u] &&
(EqQ[F, Sin] || EqQ[F, sin])

Rule 6857

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {\csc (x) \sec (x) \left (1+\sqrt [3]{1-8 \tan ^2(x)}\right )}{\left (1-8 \tan ^2(x)\right )^{2/3}} \, dx &=-\text {Subst}\left (\int \frac {1+\sqrt [3]{9-\frac {8}{x^2}}}{\left (9-\frac {8}{x^2}\right )^{2/3} x \left (1-x^2\right )} \, dx,x,\cos (x)\right )\\ &=-\text {Subst}\left (\int \left (-\frac {1}{\left (9-\frac {8}{x^2}\right )^{2/3} x \left (-1+x^2\right )}-\frac {1}{\sqrt [3]{9-\frac {8}{x^2}} x \left (-1+x^2\right )}\right ) \, dx,x,\cos (x)\right )\\ &=\text {Subst}\left (\int \frac {1}{\left (9-\frac {8}{x^2}\right )^{2/3} x \left (-1+x^2\right )} \, dx,x,\cos (x)\right )+\text {Subst}\left (\int \frac {1}{\sqrt [3]{9-\frac {8}{x^2}} x \left (-1+x^2\right )} \, dx,x,\cos (x)\right )\\ &=\text {Subst}\left (\int \frac {1}{\left (9-\frac {8}{x^2}\right )^{2/3} \left (1-\frac {1}{x^2}\right ) x^3} \, dx,x,\cos (x)\right )+\text {Subst}\left (\int \frac {1}{\sqrt [3]{9-\frac {8}{x^2}} \left (1-\frac {1}{x^2}\right ) x^3} \, dx,x,\cos (x)\right )\\ &=-\left (\frac {1}{2} \text {Subst}\left (\int \frac {1}{(9-8 x)^{2/3} (1-x)} \, dx,x,\sec ^2(x)\right )\right )-\frac {1}{2} \text {Subst}\left (\int \frac {1}{\sqrt [3]{9-8 x} (1-x)} \, dx,x,\sec ^2(x)\right )\\ &=-\log (\tan (x))-2 \left (\frac {3}{4} \text {Subst}\left (\int \frac {1}{1-x} \, dx,x,\sqrt [3]{9-8 \sec ^2(x)}\right )\right )\\ &=\frac {3}{2} \log \left (1-\sqrt [3]{9-8 \sec ^2(x)}\right )-\log (\tan (x))\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(58\) vs. \(2(27)=54\).
time = 2.85, size = 58, normalized size = 2.15 \begin {gather*} \frac {1}{4} \left (-2 \log (\tan (x))+5 \log \left (1-\sqrt [3]{1-8 \tan ^2(x)}\right )-\log \left (1+\sqrt [3]{1-8 \tan ^2(x)}+\left (1-8 \tan ^2(x)\right )^{2/3}\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Csc[x]*Sec[x]*(1 + (1 - 8*Tan[x]^2)^(1/3)))/(1 - 8*Tan[x]^2)^(2/3),x]

[Out]

(-2*Log[Tan[x]] + 5*Log[1 - (1 - 8*Tan[x]^2)^(1/3)] - Log[1 + (1 - 8*Tan[x]^2)^(1/3) + (1 - 8*Tan[x]^2)^(2/3)]
)/4

________________________________________________________________________________________

Maple [F]
time = 0.42, size = 0, normalized size = 0.00 \[\int \frac {\cot \left (x \right ) \left (1+\left (1-8 \left (\tan ^{2}\left (x \right )\right )\right )^{\frac {1}{3}}\right )}{\cos \left (x \right )^{2} \left (1-8 \left (\tan ^{2}\left (x \right )\right )\right )^{\frac {2}{3}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(x)*(1+(1-8*tan(x)^2)^(1/3))/cos(x)^2/(1-8*tan(x)^2)^(2/3),x)

[Out]

int(cot(x)*(1+(1-8*tan(x)^2)^(1/3))/cos(x)^2/(1-8*tan(x)^2)^(2/3),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(x)*(1+(1-8*tan(x)^2)^(1/3))/cos(x)^2/(1-8*tan(x)^2)^(2/3),x, algorithm="maxima")

[Out]

integrate(((-8*tan(x)^2 + 1)^(1/3) + 1)*cot(x)/((-8*tan(x)^2 + 1)^(2/3)*cos(x)^2), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 93 vs. \(2 (23) = 46\).
time = 1.71, size = 93, normalized size = 3.44 \begin {gather*} -\frac {1}{2} \, \log \left (\frac {16 \, {\left (145 \, \cos \left (x\right )^{4} - 200 \, \cos \left (x\right )^{2} + 3 \, {\left (11 \, \cos \left (x\right )^{4} - 8 \, \cos \left (x\right )^{2}\right )} \left (\frac {9 \, \cos \left (x\right )^{2} - 8}{\cos \left (x\right )^{2}}\right )^{\frac {2}{3}} + 3 \, {\left (19 \, \cos \left (x\right )^{4} - 16 \, \cos \left (x\right )^{2}\right )} \left (\frac {9 \, \cos \left (x\right )^{2} - 8}{\cos \left (x\right )^{2}}\right )^{\frac {1}{3}} + 64\right )}}{\cos \left (x\right )^{4} - 2 \, \cos \left (x\right )^{2} + 1}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(x)*(1+(1-8*tan(x)^2)^(1/3))/cos(x)^2/(1-8*tan(x)^2)^(2/3),x, algorithm="fricas")

[Out]

-1/2*log(16*(145*cos(x)^4 - 200*cos(x)^2 + 3*(11*cos(x)^4 - 8*cos(x)^2)*((9*cos(x)^2 - 8)/cos(x)^2)^(2/3) + 3*
(19*cos(x)^4 - 16*cos(x)^2)*((9*cos(x)^2 - 8)/cos(x)^2)^(1/3) + 64)/(cos(x)^4 - 2*cos(x)^2 + 1))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (\sqrt [3]{1 - 8 \tan ^{2}{\left (x \right )}} + 1\right ) \cot {\left (x \right )}}{\left (1 - 8 \tan ^{2}{\left (x \right )}\right )^{\frac {2}{3}} \cos ^{2}{\left (x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(x)*(1+(1-8*tan(x)**2)**(1/3))/cos(x)**2/(1-8*tan(x)**2)**(2/3),x)

[Out]

Integral(((1 - 8*tan(x)**2)**(1/3) + 1)*cot(x)/((1 - 8*tan(x)**2)**(2/3)*cos(x)**2), x)

________________________________________________________________________________________

Giac [A]
time = 0.97, size = 40, normalized size = 1.48 \begin {gather*} -\frac {1}{2} \, \log \left ({\left (-8 \, \tan \left (x\right )^{2} + 1\right )}^{\frac {2}{3}} + {\left (-8 \, \tan \left (x\right )^{2} + 1\right )}^{\frac {1}{3}} + 1\right ) + \log \left ({\left | {\left (-8 \, \tan \left (x\right )^{2} + 1\right )}^{\frac {1}{3}} - 1 \right |}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(x)*(1+(1-8*tan(x)^2)^(1/3))/cos(x)^2/(1-8*tan(x)^2)^(2/3),x, algorithm="giac")

[Out]

-1/2*log((-8*tan(x)^2 + 1)^(2/3) + (-8*tan(x)^2 + 1)^(1/3) + 1) + log(abs((-8*tan(x)^2 + 1)^(1/3) - 1))

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {\mathrm {cot}\left (x\right )\,\left ({\left (1-8\,{\mathrm {tan}\left (x\right )}^2\right )}^{1/3}+1\right )}{{\cos \left (x\right )}^2\,{\left (1-8\,{\mathrm {tan}\left (x\right )}^2\right )}^{2/3}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cot(x)*((1 - 8*tan(x)^2)^(1/3) + 1))/(cos(x)^2*(1 - 8*tan(x)^2)^(2/3)),x)

[Out]

int((cot(x)*((1 - 8*tan(x)^2)^(1/3) + 1))/(cos(x)^2*(1 - 8*tan(x)^2)^(2/3)), x)

________________________________________________________________________________________