3.4.25 \(\int \frac {1-x^2}{(1+x^2) \sqrt {1+x^2+x^4}} \, dx\) [325]

Optimal. Leaf size=15 \[ \tan ^{-1}\left (\frac {x}{\sqrt {1+x^2+x^4}}\right ) \]

[Out]

arctan(x/(x^4+x^2+1)^(1/2))

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 15, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {1712, 209} \begin {gather*} \text {ArcTan}\left (\frac {x}{\sqrt {x^4+x^2+1}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(1 - x^2)/((1 + x^2)*Sqrt[1 + x^2 + x^4]),x]

[Out]

ArcTan[x/Sqrt[1 + x^2 + x^4]]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 1712

Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> Dist[
A, Subst[Int[1/(d - (b*d - 2*a*e)*x^2), x], x, x/Sqrt[a + b*x^2 + c*x^4]], x] /; FreeQ[{a, b, c, d, e, A, B},
x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[c*d^2 - a*e^2, 0] && EqQ[B*d + A*e, 0]

Rubi steps

\begin {align*} \int \frac {1-x^2}{\left (1+x^2\right ) \sqrt {1+x^2+x^4}} \, dx &=\text {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\frac {x}{\sqrt {1+x^2+x^4}}\right )\\ &=\tan ^{-1}\left (\frac {x}{\sqrt {1+x^2+x^4}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.13, size = 15, normalized size = 1.00 \begin {gather*} \tan ^{-1}\left (\frac {x}{\sqrt {1+x^2+x^4}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(1 - x^2)/((1 + x^2)*Sqrt[1 + x^2 + x^4]),x]

[Out]

ArcTan[x/Sqrt[1 + x^2 + x^4]]

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 0.22, size = 188, normalized size = 12.53

method result size
elliptic \(-\arctan \left (\frac {\sqrt {x^{4}+x^{2}+1}}{x}\right )\) \(18\)
trager \(\RootOf \left (\textit {\_Z}^{2}+1\right ) \ln \left (-\frac {\RootOf \left (\textit {\_Z}^{2}+1\right ) x -\sqrt {x^{4}+x^{2}+1}}{x^{2}+1}\right )\) \(39\)
default \(-\frac {2 \sqrt {1-\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) x^{2}}\, \sqrt {1-\left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) x^{2}}\, \EllipticF \left (\frac {x \sqrt {-2+2 i \sqrt {3}}}{2}, \frac {\sqrt {-2+2 i \sqrt {3}}}{2}\right )}{\sqrt {-2+2 i \sqrt {3}}\, \sqrt {x^{4}+x^{2}+1}}+\frac {2 \sqrt {1+\frac {x^{2}}{2}-\frac {i x^{2} \sqrt {3}}{2}}\, \sqrt {1+\frac {x^{2}}{2}+\frac {i x^{2} \sqrt {3}}{2}}\, \EllipticPi \left (\sqrt {-\frac {1}{2}+\frac {i \sqrt {3}}{2}}\, x , -\frac {1}{-\frac {1}{2}+\frac {i \sqrt {3}}{2}}, \frac {\sqrt {-\frac {1}{2}-\frac {i \sqrt {3}}{2}}}{\sqrt {-\frac {1}{2}+\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {-\frac {1}{2}+\frac {i \sqrt {3}}{2}}\, \sqrt {x^{4}+x^{2}+1}}\) \(188\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-x^2+1)/(x^2+1)/(x^4+x^2+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/(-2+2*I*3^(1/2))^(1/2)*(1-(-1/2+1/2*I*3^(1/2))*x^2)^(1/2)*(1-(-1/2-1/2*I*3^(1/2))*x^2)^(1/2)/(x^4+x^2+1)^(1
/2)*EllipticF(1/2*x*(-2+2*I*3^(1/2))^(1/2),1/2*(-2+2*I*3^(1/2))^(1/2))+2/(-1/2+1/2*I*3^(1/2))^(1/2)*(1+1/2*x^2
-1/2*I*x^2*3^(1/2))^(1/2)*(1+1/2*x^2+1/2*I*x^2*3^(1/2))^(1/2)/(x^4+x^2+1)^(1/2)*EllipticPi((-1/2+1/2*I*3^(1/2)
)^(1/2)*x,-1/(-1/2+1/2*I*3^(1/2)),(-1/2-1/2*I*3^(1/2))^(1/2)/(-1/2+1/2*I*3^(1/2))^(1/2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^2+1)/(x^2+1)/(x^4+x^2+1)^(1/2),x, algorithm="maxima")

[Out]

-integrate((x^2 - 1)/(sqrt(x^4 + x^2 + 1)*(x^2 + 1)), x)

________________________________________________________________________________________

Fricas [A]
time = 1.31, size = 13, normalized size = 0.87 \begin {gather*} \arctan \left (\frac {x}{\sqrt {x^{4} + x^{2} + 1}}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^2+1)/(x^2+1)/(x^4+x^2+1)^(1/2),x, algorithm="fricas")

[Out]

arctan(x/sqrt(x^4 + x^2 + 1))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \frac {x^{2}}{x^{2} \sqrt {x^{4} + x^{2} + 1} + \sqrt {x^{4} + x^{2} + 1}}\, dx - \int \left (- \frac {1}{x^{2} \sqrt {x^{4} + x^{2} + 1} + \sqrt {x^{4} + x^{2} + 1}}\right )\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x**2+1)/(x**2+1)/(x**4+x**2+1)**(1/2),x)

[Out]

-Integral(x**2/(x**2*sqrt(x**4 + x**2 + 1) + sqrt(x**4 + x**2 + 1)), x) - Integral(-1/(x**2*sqrt(x**4 + x**2 +
 1) + sqrt(x**4 + x**2 + 1)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^2+1)/(x^2+1)/(x^4+x^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate(-(x^2 - 1)/(sqrt(x^4 + x^2 + 1)*(x^2 + 1)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.07 \begin {gather*} -\int \frac {x^2-1}{\left (x^2+1\right )\,\sqrt {x^4+x^2+1}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(x^2 - 1)/((x^2 + 1)*(x^2 + x^4 + 1)^(1/2)),x)

[Out]

-int((x^2 - 1)/((x^2 + 1)*(x^2 + x^4 + 1)^(1/2)), x)

________________________________________________________________________________________