3.3.98 \(\int \frac {(-1+2 \sqrt {x})^{5/4}}{x^2} \, dx\) [298]

Optimal. Leaf size=193 \[ -\frac {\left (-1+2 \sqrt {x}\right )^{5/4}}{x}-\frac {5 \sqrt [4]{-1+2 \sqrt {x}}}{2 \sqrt {x}}-\frac {5 \tan ^{-1}\left (1-\sqrt {2} \sqrt [4]{-1+2 \sqrt {x}}\right )}{2 \sqrt {2}}+\frac {5 \tan ^{-1}\left (1+\sqrt {2} \sqrt [4]{-1+2 \sqrt {x}}\right )}{2 \sqrt {2}}-\frac {5 \log \left (1-\sqrt {2} \sqrt [4]{-1+2 \sqrt {x}}+\sqrt {-1+2 \sqrt {x}}\right )}{4 \sqrt {2}}+\frac {5 \log \left (1+\sqrt {2} \sqrt [4]{-1+2 \sqrt {x}}+\sqrt {-1+2 \sqrt {x}}\right )}{4 \sqrt {2}} \]

[Out]

5/4*arctan(-1+2^(1/2)*(-1+2*x^(1/2))^(1/4))*2^(1/2)+5/4*arctan(1+2^(1/2)*(-1+2*x^(1/2))^(1/4))*2^(1/2)-5/8*ln(
1-2^(1/2)*(-1+2*x^(1/2))^(1/4)+(-1+2*x^(1/2))^(1/2))*2^(1/2)+5/8*ln(1+2^(1/2)*(-1+2*x^(1/2))^(1/4)+(-1+2*x^(1/
2))^(1/2))*2^(1/2)-5/2*(-1+2*x^(1/2))^(1/4)/x^(1/2)-(-1+2*x^(1/2))^(5/4)/x

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 193, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 9, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.529, Rules used = {272, 43, 65, 217, 1179, 642, 1176, 631, 210} \begin {gather*} -\frac {5 \text {ArcTan}\left (1-\sqrt {2} \sqrt [4]{2 \sqrt {x}-1}\right )}{2 \sqrt {2}}+\frac {5 \text {ArcTan}\left (\sqrt {2} \sqrt [4]{2 \sqrt {x}-1}+1\right )}{2 \sqrt {2}}-\frac {\left (2 \sqrt {x}-1\right )^{5/4}}{x}-\frac {5 \sqrt [4]{2 \sqrt {x}-1}}{2 \sqrt {x}}-\frac {5 \log \left (\sqrt {2 \sqrt {x}-1}-\sqrt {2} \sqrt [4]{2 \sqrt {x}-1}+1\right )}{4 \sqrt {2}}+\frac {5 \log \left (\sqrt {2 \sqrt {x}-1}+\sqrt {2} \sqrt [4]{2 \sqrt {x}-1}+1\right )}{4 \sqrt {2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-1 + 2*Sqrt[x])^(5/4)/x^2,x]

[Out]

-((-1 + 2*Sqrt[x])^(5/4)/x) - (5*(-1 + 2*Sqrt[x])^(1/4))/(2*Sqrt[x]) - (5*ArcTan[1 - Sqrt[2]*(-1 + 2*Sqrt[x])^
(1/4)])/(2*Sqrt[2]) + (5*ArcTan[1 + Sqrt[2]*(-1 + 2*Sqrt[x])^(1/4)])/(2*Sqrt[2]) - (5*Log[1 - Sqrt[2]*(-1 + 2*
Sqrt[x])^(1/4) + Sqrt[-1 + 2*Sqrt[x]]])/(4*Sqrt[2]) + (5*Log[1 + Sqrt[2]*(-1 + 2*Sqrt[x])^(1/4) + Sqrt[-1 + 2*
Sqrt[x]]])/(4*Sqrt[2])

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + 1))), x] - Dist[d*(n/(b*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d, n
}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && GtQ[n, 0]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rubi steps

\begin {align*} \int \frac {\left (-1+2 \sqrt {x}\right )^{5/4}}{x^2} \, dx &=2 \text {Subst}\left (\int \frac {(-1+2 x)^{5/4}}{x^3} \, dx,x,\sqrt {x}\right )\\ &=-\frac {\left (-1+2 \sqrt {x}\right )^{5/4}}{x}+\frac {5}{2} \text {Subst}\left (\int \frac {\sqrt [4]{-1+2 x}}{x^2} \, dx,x,\sqrt {x}\right )\\ &=-\frac {\left (-1+2 \sqrt {x}\right )^{5/4}}{x}-\frac {5 \sqrt [4]{-1+2 \sqrt {x}}}{2 \sqrt {x}}+\frac {5}{4} \text {Subst}\left (\int \frac {1}{x (-1+2 x)^{3/4}} \, dx,x,\sqrt {x}\right )\\ &=-\frac {\left (-1+2 \sqrt {x}\right )^{5/4}}{x}-\frac {5 \sqrt [4]{-1+2 \sqrt {x}}}{2 \sqrt {x}}+\frac {5}{2} \text {Subst}\left (\int \frac {1}{\frac {1}{2}+\frac {x^4}{2}} \, dx,x,\sqrt [4]{-1+2 \sqrt {x}}\right )\\ &=-\frac {\left (-1+2 \sqrt {x}\right )^{5/4}}{x}-\frac {5 \sqrt [4]{-1+2 \sqrt {x}}}{2 \sqrt {x}}+\frac {5}{4} \text {Subst}\left (\int \frac {1-x^2}{\frac {1}{2}+\frac {x^4}{2}} \, dx,x,\sqrt [4]{-1+2 \sqrt {x}}\right )+\frac {5}{4} \text {Subst}\left (\int \frac {1+x^2}{\frac {1}{2}+\frac {x^4}{2}} \, dx,x,\sqrt [4]{-1+2 \sqrt {x}}\right )\\ &=-\frac {\left (-1+2 \sqrt {x}\right )^{5/4}}{x}-\frac {5 \sqrt [4]{-1+2 \sqrt {x}}}{2 \sqrt {x}}+\frac {5}{4} \text {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,\sqrt [4]{-1+2 \sqrt {x}}\right )+\frac {5}{4} \text {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,\sqrt [4]{-1+2 \sqrt {x}}\right )-\frac {5 \text {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,\sqrt [4]{-1+2 \sqrt {x}}\right )}{4 \sqrt {2}}-\frac {5 \text {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,\sqrt [4]{-1+2 \sqrt {x}}\right )}{4 \sqrt {2}}\\ &=-\frac {\left (-1+2 \sqrt {x}\right )^{5/4}}{x}-\frac {5 \sqrt [4]{-1+2 \sqrt {x}}}{2 \sqrt {x}}-\frac {5 \log \left (1-\sqrt {2} \sqrt [4]{-1+2 \sqrt {x}}+\sqrt {-1+2 \sqrt {x}}\right )}{4 \sqrt {2}}+\frac {5 \log \left (1+\sqrt {2} \sqrt [4]{-1+2 \sqrt {x}}+\sqrt {-1+2 \sqrt {x}}\right )}{4 \sqrt {2}}+\frac {5 \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\sqrt {2} \sqrt [4]{-1+2 \sqrt {x}}\right )}{2 \sqrt {2}}-\frac {5 \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\sqrt {2} \sqrt [4]{-1+2 \sqrt {x}}\right )}{2 \sqrt {2}}\\ &=-\frac {\left (-1+2 \sqrt {x}\right )^{5/4}}{x}-\frac {5 \sqrt [4]{-1+2 \sqrt {x}}}{2 \sqrt {x}}-\frac {5 \tan ^{-1}\left (1-\sqrt {2} \sqrt [4]{-1+2 \sqrt {x}}\right )}{2 \sqrt {2}}+\frac {5 \tan ^{-1}\left (1+\sqrt {2} \sqrt [4]{-1+2 \sqrt {x}}\right )}{2 \sqrt {2}}-\frac {5 \log \left (1-\sqrt {2} \sqrt [4]{-1+2 \sqrt {x}}+\sqrt {-1+2 \sqrt {x}}\right )}{4 \sqrt {2}}+\frac {5 \log \left (1+\sqrt {2} \sqrt [4]{-1+2 \sqrt {x}}+\sqrt {-1+2 \sqrt {x}}\right )}{4 \sqrt {2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.24, size = 120, normalized size = 0.62 \begin {gather*} \frac {2 \left (2-9 \sqrt {x}\right ) \sqrt [4]{-1+2 \sqrt {x}}+5 \sqrt {2} x \tan ^{-1}\left (\frac {-1+\sqrt {-1+2 \sqrt {x}}}{\sqrt {2} \sqrt [4]{-1+2 \sqrt {x}}}\right )+5 \sqrt {2} x \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{-1+2 \sqrt {x}}}{1+\sqrt {-1+2 \sqrt {x}}}\right )}{4 x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-1 + 2*Sqrt[x])^(5/4)/x^2,x]

[Out]

(2*(2 - 9*Sqrt[x])*(-1 + 2*Sqrt[x])^(1/4) + 5*Sqrt[2]*x*ArcTan[(-1 + Sqrt[-1 + 2*Sqrt[x]])/(Sqrt[2]*(-1 + 2*Sq
rt[x])^(1/4))] + 5*Sqrt[2]*x*ArcTanh[(Sqrt[2]*(-1 + 2*Sqrt[x])^(1/4))/(1 + Sqrt[-1 + 2*Sqrt[x]])])/(4*x)

________________________________________________________________________________________

Maple [A]
time = 0.08, size = 125, normalized size = 0.65

method result size
meijerg \(\frac {5 \mathrm {signum}\left (-1+2 \sqrt {x}\right )^{\frac {5}{4}} \left (-\frac {2 \Gamma \left (\frac {3}{4}\right )}{5 x}+\frac {2 \Gamma \left (\frac {3}{4}\right )}{\sqrt {x}}+\frac {\left (-2 \ln \left (2\right )+\frac {\pi }{2}-\frac {3}{2}+\frac {\ln \left (x \right )}{2}+i \pi \right ) \Gamma \left (\frac {3}{4}\right )}{2}+\frac {\Gamma \left (\frac {3}{4}\right ) \sqrt {x}\, \hypergeom \left (\left [1, 1, \frac {7}{4}\right ], \left [2, 4\right ], 2 \sqrt {x}\right )}{4}\right )}{2 \Gamma \left (\frac {3}{4}\right ) \left (-\mathrm {signum}\left (-1+2 \sqrt {x}\right )\right )^{\frac {5}{4}}}\) \(85\)
derivativedivides \(\frac {-\frac {9 \left (-1+2 \sqrt {x}\right )^{\frac {5}{4}}}{4}-\frac {5 \left (-1+2 \sqrt {x}\right )^{\frac {1}{4}}}{4}}{x}+\frac {5 \sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (-1+2 \sqrt {x}\right )^{\frac {1}{4}}+\sqrt {-1+2 \sqrt {x}}}{1-\sqrt {2}\, \left (-1+2 \sqrt {x}\right )^{\frac {1}{4}}+\sqrt {-1+2 \sqrt {x}}}\right )+2 \arctan \left (1+\sqrt {2}\, \left (-1+2 \sqrt {x}\right )^{\frac {1}{4}}\right )+2 \arctan \left (-1+\sqrt {2}\, \left (-1+2 \sqrt {x}\right )^{\frac {1}{4}}\right )\right )}{8}\) \(125\)
default \(\frac {-\frac {9 \left (-1+2 \sqrt {x}\right )^{\frac {5}{4}}}{4}-\frac {5 \left (-1+2 \sqrt {x}\right )^{\frac {1}{4}}}{4}}{x}+\frac {5 \sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (-1+2 \sqrt {x}\right )^{\frac {1}{4}}+\sqrt {-1+2 \sqrt {x}}}{1-\sqrt {2}\, \left (-1+2 \sqrt {x}\right )^{\frac {1}{4}}+\sqrt {-1+2 \sqrt {x}}}\right )+2 \arctan \left (1+\sqrt {2}\, \left (-1+2 \sqrt {x}\right )^{\frac {1}{4}}\right )+2 \arctan \left (-1+\sqrt {2}\, \left (-1+2 \sqrt {x}\right )^{\frac {1}{4}}\right )\right )}{8}\) \(125\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-1+2*x^(1/2))^(5/4)/x^2,x,method=_RETURNVERBOSE)

[Out]

8*(-9/32*(-1+2*x^(1/2))^(5/4)-5/32*(-1+2*x^(1/2))^(1/4))/x+5/8*2^(1/2)*(ln((1+2^(1/2)*(-1+2*x^(1/2))^(1/4)+(-1
+2*x^(1/2))^(1/2))/(1-2^(1/2)*(-1+2*x^(1/2))^(1/4)+(-1+2*x^(1/2))^(1/2)))+2*arctan(1+2^(1/2)*(-1+2*x^(1/2))^(1
/4))+2*arctan(-1+2^(1/2)*(-1+2*x^(1/2))^(1/4)))

________________________________________________________________________________________

Maxima [A]
time = 5.67, size = 157, normalized size = 0.81 \begin {gather*} \frac {5}{4} \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, {\left (2 \, \sqrt {x} - 1\right )}^{\frac {1}{4}}\right )}\right ) + \frac {5}{4} \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, {\left (2 \, \sqrt {x} - 1\right )}^{\frac {1}{4}}\right )}\right ) + \frac {5}{8} \, \sqrt {2} \log \left (\sqrt {2} {\left (2 \, \sqrt {x} - 1\right )}^{\frac {1}{4}} + \sqrt {2 \, \sqrt {x} - 1} + 1\right ) - \frac {5}{8} \, \sqrt {2} \log \left (-\sqrt {2} {\left (2 \, \sqrt {x} - 1\right )}^{\frac {1}{4}} + \sqrt {2 \, \sqrt {x} - 1} + 1\right ) - \frac {9 \, {\left (2 \, \sqrt {x} - 1\right )}^{\frac {5}{4}} + 5 \, {\left (2 \, \sqrt {x} - 1\right )}^{\frac {1}{4}}}{{\left (2 \, \sqrt {x} - 1\right )}^{2} + 4 \, \sqrt {x} - 1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+2*x^(1/2))^(5/4)/x^2,x, algorithm="maxima")

[Out]

5/4*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*(2*sqrt(x) - 1)^(1/4))) + 5/4*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)
 - 2*(2*sqrt(x) - 1)^(1/4))) + 5/8*sqrt(2)*log(sqrt(2)*(2*sqrt(x) - 1)^(1/4) + sqrt(2*sqrt(x) - 1) + 1) - 5/8*
sqrt(2)*log(-sqrt(2)*(2*sqrt(x) - 1)^(1/4) + sqrt(2*sqrt(x) - 1) + 1) - (9*(2*sqrt(x) - 1)^(5/4) + 5*(2*sqrt(x
) - 1)^(1/4))/((2*sqrt(x) - 1)^2 + 4*sqrt(x) - 1)

________________________________________________________________________________________

Fricas [A]
time = 0.79, size = 202, normalized size = 1.05 \begin {gather*} -\frac {20 \, \sqrt {2} x \arctan \left (\sqrt {2} \sqrt {\sqrt {2} {\left (2 \, \sqrt {x} - 1\right )}^{\frac {1}{4}} + \sqrt {2 \, \sqrt {x} - 1} + 1} - \sqrt {2} {\left (2 \, \sqrt {x} - 1\right )}^{\frac {1}{4}} - 1\right ) + 20 \, \sqrt {2} x \arctan \left (\frac {1}{2} \, \sqrt {2} \sqrt {-4 \, \sqrt {2} {\left (2 \, \sqrt {x} - 1\right )}^{\frac {1}{4}} + 4 \, \sqrt {2 \, \sqrt {x} - 1} + 4} - \sqrt {2} {\left (2 \, \sqrt {x} - 1\right )}^{\frac {1}{4}} + 1\right ) - 5 \, \sqrt {2} x \log \left (4 \, \sqrt {2} {\left (2 \, \sqrt {x} - 1\right )}^{\frac {1}{4}} + 4 \, \sqrt {2 \, \sqrt {x} - 1} + 4\right ) + 5 \, \sqrt {2} x \log \left (-4 \, \sqrt {2} {\left (2 \, \sqrt {x} - 1\right )}^{\frac {1}{4}} + 4 \, \sqrt {2 \, \sqrt {x} - 1} + 4\right ) + 4 \, {\left (9 \, \sqrt {x} - 2\right )} {\left (2 \, \sqrt {x} - 1\right )}^{\frac {1}{4}}}{8 \, x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+2*x^(1/2))^(5/4)/x^2,x, algorithm="fricas")

[Out]

-1/8*(20*sqrt(2)*x*arctan(sqrt(2)*sqrt(sqrt(2)*(2*sqrt(x) - 1)^(1/4) + sqrt(2*sqrt(x) - 1) + 1) - sqrt(2)*(2*s
qrt(x) - 1)^(1/4) - 1) + 20*sqrt(2)*x*arctan(1/2*sqrt(2)*sqrt(-4*sqrt(2)*(2*sqrt(x) - 1)^(1/4) + 4*sqrt(2*sqrt
(x) - 1) + 4) - sqrt(2)*(2*sqrt(x) - 1)^(1/4) + 1) - 5*sqrt(2)*x*log(4*sqrt(2)*(2*sqrt(x) - 1)^(1/4) + 4*sqrt(
2*sqrt(x) - 1) + 4) + 5*sqrt(2)*x*log(-4*sqrt(2)*(2*sqrt(x) - 1)^(1/4) + 4*sqrt(2*sqrt(x) - 1) + 4) + 4*(9*sqr
t(x) - 2)*(2*sqrt(x) - 1)^(1/4))/x

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 3.16, size = 44, normalized size = 0.23 \begin {gather*} - \frac {4 \cdot \sqrt [4]{2} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {5}{4}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {\frac {e^{2 i \pi }}{2 \sqrt {x}}} \right )}}{x^{\frac {3}{8}} \Gamma \left (\frac {7}{4}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+2*x**(1/2))**(5/4)/x**2,x)

[Out]

-4*2**(1/4)*gamma(3/4)*hyper((-5/4, 3/4), (7/4,), exp_polar(2*I*pi)/(2*sqrt(x)))/(x**(3/8)*gamma(7/4))

________________________________________________________________________________________

Giac [A]
time = 0.68, size = 142, normalized size = 0.74 \begin {gather*} \frac {5}{4} \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, {\left (2 \, \sqrt {x} - 1\right )}^{\frac {1}{4}}\right )}\right ) + \frac {5}{4} \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, {\left (2 \, \sqrt {x} - 1\right )}^{\frac {1}{4}}\right )}\right ) + \frac {5}{8} \, \sqrt {2} \log \left (\sqrt {2} {\left (2 \, \sqrt {x} - 1\right )}^{\frac {1}{4}} + \sqrt {2 \, \sqrt {x} - 1} + 1\right ) - \frac {5}{8} \, \sqrt {2} \log \left (-\sqrt {2} {\left (2 \, \sqrt {x} - 1\right )}^{\frac {1}{4}} + \sqrt {2 \, \sqrt {x} - 1} + 1\right ) - \frac {9 \, {\left (2 \, \sqrt {x} - 1\right )}^{\frac {5}{4}} + 5 \, {\left (2 \, \sqrt {x} - 1\right )}^{\frac {1}{4}}}{4 \, x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+2*x^(1/2))^(5/4)/x^2,x, algorithm="giac")

[Out]

5/4*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*(2*sqrt(x) - 1)^(1/4))) + 5/4*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)
 - 2*(2*sqrt(x) - 1)^(1/4))) + 5/8*sqrt(2)*log(sqrt(2)*(2*sqrt(x) - 1)^(1/4) + sqrt(2*sqrt(x) - 1) + 1) - 5/8*
sqrt(2)*log(-sqrt(2)*(2*sqrt(x) - 1)^(1/4) + sqrt(2*sqrt(x) - 1) + 1) - 1/4*(9*(2*sqrt(x) - 1)^(5/4) + 5*(2*sq
rt(x) - 1)^(1/4))/x

________________________________________________________________________________________

Mupad [B]
time = 1.28, size = 77, normalized size = 0.40 \begin {gather*} -\frac {5\,{\left (2\,\sqrt {x}-1\right )}^{1/4}}{4\,x}-\frac {9\,{\left (2\,\sqrt {x}-1\right )}^{5/4}}{4\,x}+\sqrt {2}\,\mathrm {atan}\left (\sqrt {2}\,{\left (2\,\sqrt {x}-1\right )}^{1/4}\,\left (\frac {1}{2}-\frac {1}{2}{}\mathrm {i}\right )\right )\,\left (\frac {5}{4}+\frac {5}{4}{}\mathrm {i}\right )+\sqrt {2}\,\mathrm {atan}\left (\sqrt {2}\,{\left (2\,\sqrt {x}-1\right )}^{1/4}\,\left (\frac {1}{2}+\frac {1}{2}{}\mathrm {i}\right )\right )\,\left (\frac {5}{4}-\frac {5}{4}{}\mathrm {i}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x^(1/2) - 1)^(5/4)/x^2,x)

[Out]

2^(1/2)*atan(2^(1/2)*(2*x^(1/2) - 1)^(1/4)*(1/2 - 1i/2))*(5/4 + 5i/4) - (9*(2*x^(1/2) - 1)^(5/4))/(4*x) - (5*(
2*x^(1/2) - 1)^(1/4))/(4*x) + 2^(1/2)*atan(2^(1/2)*(2*x^(1/2) - 1)^(1/4)*(1/2 + 1i/2))*(5/4 - 5i/4)

________________________________________________________________________________________