3.3.54 \(\int \frac {1-x+x^2}{(1+x^2)^{3/2}} \, dx\) [254]

Optimal. Leaf size=12 \[ \frac {1}{\sqrt {1+x^2}}+\sinh ^{-1}(x) \]

[Out]

arcsinh(x)+1/(x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 12, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {1828, 221} \begin {gather*} \frac {1}{\sqrt {x^2+1}}+\sinh ^{-1}(x) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(1 - x + x^2)/(1 + x^2)^(3/2),x]

[Out]

1/Sqrt[1 + x^2] + ArcSinh[x]

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 1828

Int[(Pq_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, a + b*x^2, x], f = Coeff[P
olynomialRemainder[Pq, a + b*x^2, x], x, 0], g = Coeff[PolynomialRemainder[Pq, a + b*x^2, x], x, 1]}, Simp[(a*
g - b*f*x)*((a + b*x^2)^(p + 1)/(2*a*b*(p + 1))), x] + Dist[1/(2*a*(p + 1)), Int[(a + b*x^2)^(p + 1)*ExpandToS
um[2*a*(p + 1)*Q + f*(2*p + 3), x], x], x]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && LtQ[p, -1]

Rubi steps

\begin {align*} \int \frac {1-x+x^2}{\left (1+x^2\right )^{3/2}} \, dx &=\frac {1}{\sqrt {1+x^2}}+\int \frac {1}{\sqrt {1+x^2}} \, dx\\ &=\frac {1}{\sqrt {1+x^2}}+\sinh ^{-1}(x)\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.11, size = 22, normalized size = 1.83 \begin {gather*} \frac {1}{\sqrt {1+x^2}}+\tanh ^{-1}\left (\frac {x}{\sqrt {1+x^2}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(1 - x + x^2)/(1 + x^2)^(3/2),x]

[Out]

1/Sqrt[1 + x^2] + ArcTanh[x/Sqrt[1 + x^2]]

________________________________________________________________________________________

Maple [A]
time = 0.06, size = 11, normalized size = 0.92

method result size
default \(\arcsinh \left (x \right )+\frac {1}{\sqrt {x^{2}+1}}\) \(11\)
risch \(\arcsinh \left (x \right )+\frac {1}{\sqrt {x^{2}+1}}\) \(11\)
trager \(\frac {1}{\sqrt {x^{2}+1}}+\ln \left (x +\sqrt {x^{2}+1}\right )\) \(19\)
meijerg \(\frac {x}{\sqrt {x^{2}+1}}+\frac {-\frac {\sqrt {\pi }\, x}{\sqrt {x^{2}+1}}+\sqrt {\pi }\, \arcsinh \left (x \right )}{\sqrt {\pi }}-\frac {\sqrt {\pi }-\frac {\sqrt {\pi }}{\sqrt {x^{2}+1}}}{\sqrt {\pi }}\) \(56\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2-x+1)/(x^2+1)^(3/2),x,method=_RETURNVERBOSE)

[Out]

arcsinh(x)+1/(x^2+1)^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 2.70, size = 10, normalized size = 0.83 \begin {gather*} \frac {1}{\sqrt {x^{2} + 1}} + \operatorname {arsinh}\left (x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2-x+1)/(x^2+1)^(3/2),x, algorithm="maxima")

[Out]

1/sqrt(x^2 + 1) + arcsinh(x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 37 vs. \(2 (10) = 20\).
time = 0.51, size = 37, normalized size = 3.08 \begin {gather*} -\frac {{\left (x^{2} + 1\right )} \log \left (-x + \sqrt {x^{2} + 1}\right ) - \sqrt {x^{2} + 1}}{x^{2} + 1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2-x+1)/(x^2+1)^(3/2),x, algorithm="fricas")

[Out]

-((x^2 + 1)*log(-x + sqrt(x^2 + 1)) - sqrt(x^2 + 1))/(x^2 + 1)

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 29 vs. \(2 (12) = 24\).
time = 5.72, size = 29, normalized size = 2.42 \begin {gather*} \frac {x^{2} \operatorname {asinh}{\left (x \right )}}{x^{2} + 1} + \frac {\operatorname {asinh}{\left (x \right )}}{x^{2} + 1} + \frac {1}{\sqrt {x^{2} + 1}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**2-x+1)/(x**2+1)**(3/2),x)

[Out]

x**2*asinh(x)/(x**2 + 1) + asinh(x)/(x**2 + 1) + 1/sqrt(x**2 + 1)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 22 vs. \(2 (10) = 20\).
time = 0.86, size = 22, normalized size = 1.83 \begin {gather*} \frac {1}{\sqrt {x^{2} + 1}} - \log \left (-x + \sqrt {x^{2} + 1}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2-x+1)/(x^2+1)^(3/2),x, algorithm="giac")

[Out]

1/sqrt(x^2 + 1) - log(-x + sqrt(x^2 + 1))

________________________________________________________________________________________

Mupad [B]
time = 0.19, size = 24, normalized size = 2.00 \begin {gather*} \frac {\mathrm {asinh}\left (x\right )+x^2\,\mathrm {asinh}\left (x\right )+\sqrt {x^2+1}}{x^2+1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2 - x + 1)/(x^2 + 1)^(3/2),x)

[Out]

(asinh(x) + x^2*asinh(x) + (x^2 + 1)^(1/2))/(x^2 + 1)

________________________________________________________________________________________