3.2.7 \(\int \frac {1+x^4}{-1+x-x^2+x^3} \, dx\) [107]

Optimal. Leaf size=29 \[ x+\frac {x^2}{2}-\tan ^{-1}(x)+\log (1-x)-\frac {1}{2} \log \left (1+x^2\right ) \]

[Out]

x+1/2*x^2-arctan(x)+ln(1-x)-1/2*ln(x^2+1)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 29, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {2099, 649, 209, 266} \begin {gather*} -\text {ArcTan}(x)+\frac {x^2}{2}-\frac {1}{2} \log \left (x^2+1\right )+x+\log (1-x) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(1 + x^4)/(-1 + x - x^2 + x^3),x]

[Out]

x + x^2/2 - ArcTan[x] + Log[1 - x] - Log[1 + x^2]/2

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 266

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 649

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Dist[d, Int[1/(a + c*x^2), x], x] + Dist[e, Int[x/
(a + c*x^2), x], x] /; FreeQ[{a, c, d, e}, x] &&  !NiceSqrtQ[(-a)*c]

Rule 2099

Int[(P_)^(p_)*(Q_)^(q_.), x_Symbol] :> With[{PP = Factor[P]}, Int[ExpandIntegrand[PP^p*Q^q, x], x] /;  !SumQ[N
onfreeFactors[PP, x]]] /; FreeQ[q, x] && PolyQ[P, x] && PolyQ[Q, x] && IntegerQ[p] && NeQ[P, x]

Rubi steps

\begin {align*} \int \frac {1+x^4}{-1+x-x^2+x^3} \, dx &=\int \left (1+\frac {1}{-1+x}+x+\frac {-1-x}{1+x^2}\right ) \, dx\\ &=x+\frac {x^2}{2}+\log (1-x)+\int \frac {-1-x}{1+x^2} \, dx\\ &=x+\frac {x^2}{2}+\log (1-x)-\int \frac {1}{1+x^2} \, dx-\int \frac {x}{1+x^2} \, dx\\ &=x+\frac {x^2}{2}-\tan ^{-1}(x)+\log (1-x)-\frac {1}{2} \log \left (1+x^2\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 29, normalized size = 1.00 \begin {gather*} x+\frac {x^2}{2}-\tan ^{-1}(x)+\log (1-x)-\frac {1}{2} \log \left (1+x^2\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(1 + x^4)/(-1 + x - x^2 + x^3),x]

[Out]

x + x^2/2 - ArcTan[x] + Log[1 - x] - Log[1 + x^2]/2

________________________________________________________________________________________

Maple [A]
time = 0.02, size = 24, normalized size = 0.83

method result size
default \(x +\frac {x^{2}}{2}+\ln \left (-1+x \right )-\frac {\ln \left (x^{2}+1\right )}{2}-\arctan \left (x \right )\) \(24\)
risch \(x +\frac {x^{2}}{2}+\ln \left (-1+x \right )-\frac {\ln \left (x^{2}+1\right )}{2}-\arctan \left (x \right )\) \(24\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^4+1)/(x^3-x^2+x-1),x,method=_RETURNVERBOSE)

[Out]

x+1/2*x^2+ln(-1+x)-1/2*ln(x^2+1)-arctan(x)

________________________________________________________________________________________

Maxima [A]
time = 4.32, size = 23, normalized size = 0.79 \begin {gather*} \frac {1}{2} \, x^{2} + x - \arctan \left (x\right ) - \frac {1}{2} \, \log \left (x^{2} + 1\right ) + \log \left (x - 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+1)/(x^3-x^2+x-1),x, algorithm="maxima")

[Out]

1/2*x^2 + x - arctan(x) - 1/2*log(x^2 + 1) + log(x - 1)

________________________________________________________________________________________

Fricas [A]
time = 0.47, size = 23, normalized size = 0.79 \begin {gather*} \frac {1}{2} \, x^{2} + x - \arctan \left (x\right ) - \frac {1}{2} \, \log \left (x^{2} + 1\right ) + \log \left (x - 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+1)/(x^3-x^2+x-1),x, algorithm="fricas")

[Out]

1/2*x^2 + x - arctan(x) - 1/2*log(x^2 + 1) + log(x - 1)

________________________________________________________________________________________

Sympy [A]
time = 0.04, size = 22, normalized size = 0.76 \begin {gather*} \frac {x^{2}}{2} + x + \log {\left (x - 1 \right )} - \frac {\log {\left (x^{2} + 1 \right )}}{2} - \operatorname {atan}{\left (x \right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**4+1)/(x**3-x**2+x-1),x)

[Out]

x**2/2 + x + log(x - 1) - log(x**2 + 1)/2 - atan(x)

________________________________________________________________________________________

Giac [A]
time = 0.52, size = 24, normalized size = 0.83 \begin {gather*} \frac {1}{2} \, x^{2} + x - \arctan \left (x\right ) - \frac {1}{2} \, \log \left (x^{2} + 1\right ) + \log \left ({\left | x - 1 \right |}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+1)/(x^3-x^2+x-1),x, algorithm="giac")

[Out]

1/2*x^2 + x - arctan(x) - 1/2*log(x^2 + 1) + log(abs(x - 1))

________________________________________________________________________________________

Mupad [B]
time = 0.05, size = 29, normalized size = 1.00 \begin {gather*} x+\ln \left (x-1\right )+\frac {x^2}{2}+\ln \left (x-\mathrm {i}\right )\,\left (-\frac {1}{2}+\frac {1}{2}{}\mathrm {i}\right )+\ln \left (x+1{}\mathrm {i}\right )\,\left (-\frac {1}{2}-\frac {1}{2}{}\mathrm {i}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^4 + 1)/(x - x^2 + x^3 - 1),x)

[Out]

x + log(x - 1) - log(x - 1i)*(1/2 - 1i/2) - log(x + 1i)*(1/2 + 1i/2) + x^2/2

________________________________________________________________________________________