43.46 Problem number 7043

\[ \int \frac {4 e x+e \left (160 x-40 x^2\right ) \log (4)+e (-16+4 x) \log (4-x)+e^{\frac {e^{\frac {x}{e}}}{4}} \left (4 e+e (80-20 x) \log (4)+e^{\frac {x}{e}} \left (20 x-5 x^2\right ) \log (4)+e^{\frac {x}{e}} (-4+x) \log (4-x)\right )}{e (-16+4 x)} \, dx \]

Optimal antiderivative \[ \left (\ln \! \left (4-x \right )-10 x \ln \! \left (2\right )\right ) \left (x +{\mathrm e}^{\frac {{\mathrm e}^{{\mathrm e}^{-1} x}}{4}}\right )+25 \]

command

integrate((((x-4)*exp(x/exp(1))*log(-x+4)+2*(-5*x^2+20*x)*log(2)*exp(x/exp(1))+2*(-20*x+80)*exp(1)*log(2)+4*exp(1))*exp(1/4*exp(x/exp(1)))+(4*x-16)*exp(1)*log(-x+4)+2*(-40*x^2+160*x)*exp(1)*log(2)+4*x*exp(1))/(4*x-16)/exp(1),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \text {could not integrate} \]

Giac 1.7.0 via sagemath 9.3 output

\[ -{\left (10 \, x^{2} e \log \left (2\right ) + 10 \, x e^{\left (\frac {1}{4} \, e^{\left (x e^{\left (-1\right )}\right )} + 1\right )} \log \left (2\right ) - x e \log \left (-x + 4\right ) - e^{\left (\frac {1}{4} \, e^{\left (x e^{\left (-1\right )}\right )} + 1\right )} \log \left (-x + 4\right )\right )} e^{\left (-1\right )} \]