3.8.84 \(\int \frac {(1+2 x^3) \sqrt {-1+x^6}}{x^7} \, dx\)

Optimal. Leaf size=60 \[ \frac {\sqrt {x^6-1} \left (-4 x^3-1\right )}{6 x^6}+\frac {2}{3} \log \left (\sqrt {x^6-1}+x^3\right )+\frac {1}{3} \tan ^{-1}\left (\sqrt {x^6-1}+x^3\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 56, normalized size of antiderivative = 0.93, number of steps used = 8, number of rules used = 8, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {1475, 811, 844, 217, 206, 266, 63, 203} \begin {gather*} \frac {1}{6} \tan ^{-1}\left (\sqrt {x^6-1}\right )-\frac {\sqrt {x^6-1} \left (4 x^3+1\right )}{6 x^6}+\frac {2}{3} \tanh ^{-1}\left (\frac {x^3}{\sqrt {x^6-1}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((1 + 2*x^3)*Sqrt[-1 + x^6])/x^7,x]

[Out]

-1/6*((1 + 4*x^3)*Sqrt[-1 + x^6])/x^6 + ArcTan[Sqrt[-1 + x^6]]/6 + (2*ArcTanh[x^3/Sqrt[-1 + x^6]])/3

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 811

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Simp[((d + e*x)^
(m + 1)*(a + c*x^2)^p*((d*g - e*f*(m + 2))*(c*d^2 + a*e^2) - 2*c*d^2*p*(e*f - d*g) - e*(g*(m + 1)*(c*d^2 + a*e
^2) + 2*c*d*p*(e*f - d*g))*x))/(e^2*(m + 1)*(m + 2)*(c*d^2 + a*e^2)), x] - Dist[p/(e^2*(m + 1)*(m + 2)*(c*d^2
+ a*e^2)), Int[(d + e*x)^(m + 2)*(a + c*x^2)^(p - 1)*Simp[2*a*c*e*(e*f - d*g)*(m + 2) - c*(2*c*d*(d*g*(2*p + 1
) - e*f*(m + 2*p + 2)) - 2*a*e^2*g*(m + 1))*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[c*d^2 + a*e^2
, 0] && GtQ[p, 0] && LtQ[m, -2] && LtQ[m + 2*p, 0] &&  !ILtQ[m + 2*p + 3, 0]

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 1475

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[I
nt[x^(Simplify[(m + 1)/n] - 1)*(d + e*x)^q*(a + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a, c, d, e, m, n, p, q}, x
] && EqQ[n2, 2*n] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {\left (1+2 x^3\right ) \sqrt {-1+x^6}}{x^7} \, dx &=\frac {1}{3} \operatorname {Subst}\left (\int \frac {(1+2 x) \sqrt {-1+x^2}}{x^3} \, dx,x,x^3\right )\\ &=-\frac {\left (1+4 x^3\right ) \sqrt {-1+x^6}}{6 x^6}+\frac {1}{12} \operatorname {Subst}\left (\int \frac {2+8 x}{x \sqrt {-1+x^2}} \, dx,x,x^3\right )\\ &=-\frac {\left (1+4 x^3\right ) \sqrt {-1+x^6}}{6 x^6}+\frac {1}{6} \operatorname {Subst}\left (\int \frac {1}{x \sqrt {-1+x^2}} \, dx,x,x^3\right )+\frac {2}{3} \operatorname {Subst}\left (\int \frac {1}{\sqrt {-1+x^2}} \, dx,x,x^3\right )\\ &=-\frac {\left (1+4 x^3\right ) \sqrt {-1+x^6}}{6 x^6}+\frac {1}{12} \operatorname {Subst}\left (\int \frac {1}{\sqrt {-1+x} x} \, dx,x,x^6\right )+\frac {2}{3} \operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\frac {x^3}{\sqrt {-1+x^6}}\right )\\ &=-\frac {\left (1+4 x^3\right ) \sqrt {-1+x^6}}{6 x^6}+\frac {2}{3} \tanh ^{-1}\left (\frac {x^3}{\sqrt {-1+x^6}}\right )+\frac {1}{6} \operatorname {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\sqrt {-1+x^6}\right )\\ &=-\frac {\left (1+4 x^3\right ) \sqrt {-1+x^6}}{6 x^6}+\frac {1}{6} \tan ^{-1}\left (\sqrt {-1+x^6}\right )+\frac {2}{3} \tanh ^{-1}\left (\frac {x^3}{\sqrt {-1+x^6}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 71, normalized size = 1.18 \begin {gather*} -\frac {\left (x^6-1\right ) \left (-x^6 \tanh ^{-1}\left (\sqrt {1-x^6}\right )+\left (4 x^3+1\right ) \sqrt {1-x^6}+4 x^6 \sin ^{-1}\left (x^3\right )\right )}{6 x^6 \sqrt {-\left (x^6-1\right )^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((1 + 2*x^3)*Sqrt[-1 + x^6])/x^7,x]

[Out]

-1/6*((-1 + x^6)*((1 + 4*x^3)*Sqrt[1 - x^6] + 4*x^6*ArcSin[x^3] - x^6*ArcTanh[Sqrt[1 - x^6]]))/(x^6*Sqrt[-(-1
+ x^6)^2])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.18, size = 68, normalized size = 1.13 \begin {gather*} \frac {\left (-1-4 x^3\right ) \sqrt {-1+x^6}}{6 x^6}-\frac {1}{3} \tan ^{-1}\left (\frac {\sqrt {-1+x^6}}{-1+x^3}\right )+\frac {4}{3} \tanh ^{-1}\left (\frac {\sqrt {-1+x^6}}{-1+x^3}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[((1 + 2*x^3)*Sqrt[-1 + x^6])/x^7,x]

[Out]

((-1 - 4*x^3)*Sqrt[-1 + x^6])/(6*x^6) - ArcTan[Sqrt[-1 + x^6]/(-1 + x^3)]/3 + (4*ArcTanh[Sqrt[-1 + x^6]/(-1 +
x^3)])/3

________________________________________________________________________________________

fricas [A]  time = 0.46, size = 65, normalized size = 1.08 \begin {gather*} \frac {2 \, x^{6} \arctan \left (-x^{3} + \sqrt {x^{6} - 1}\right ) - 4 \, x^{6} \log \left (-x^{3} + \sqrt {x^{6} - 1}\right ) - 4 \, x^{6} - \sqrt {x^{6} - 1} {\left (4 \, x^{3} + 1\right )}}{6 \, x^{6}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x^3+1)*(x^6-1)^(1/2)/x^7,x, algorithm="fricas")

[Out]

1/6*(2*x^6*arctan(-x^3 + sqrt(x^6 - 1)) - 4*x^6*log(-x^3 + sqrt(x^6 - 1)) - 4*x^6 - sqrt(x^6 - 1)*(4*x^3 + 1))
/x^6

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {x^{6} - 1} {\left (2 \, x^{3} + 1\right )}}{x^{7}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x^3+1)*(x^6-1)^(1/2)/x^7,x, algorithm="giac")

[Out]

integrate(sqrt(x^6 - 1)*(2*x^3 + 1)/x^7, x)

________________________________________________________________________________________

maple [C]  time = 0.53, size = 66, normalized size = 1.10

method result size
trager \(-\frac {\left (4 x^{3}+1\right ) \sqrt {x^{6}-1}}{6 x^{6}}-\frac {2 \ln \left (-x^{3}+\sqrt {x^{6}-1}\right )}{3}-\frac {\RootOf \left (\textit {\_Z}^{2}+1\right ) \ln \left (\frac {-\RootOf \left (\textit {\_Z}^{2}+1\right )+\sqrt {x^{6}-1}}{x^{3}}\right )}{6}\) \(66\)
risch \(-\frac {4 x^{9}+x^{6}-4 x^{3}-1}{6 x^{6} \sqrt {x^{6}-1}}+\frac {\sqrt {-\mathrm {signum}\left (x^{6}-1\right )}\, \left (-2 \sqrt {\pi }\, \ln \left (\frac {1}{2}+\frac {\sqrt {-x^{6}+1}}{2}\right )+\left (-2 \ln \relax (2)+6 \ln \relax (x )+i \pi \right ) \sqrt {\pi }\right )}{12 \sqrt {\pi }\, \sqrt {\mathrm {signum}\left (x^{6}-1\right )}}+\frac {2 \sqrt {-\mathrm {signum}\left (x^{6}-1\right )}\, \arcsin \left (x^{3}\right )}{3 \sqrt {\mathrm {signum}\left (x^{6}-1\right )}}\) \(113\)
meijerg \(\frac {\sqrt {\mathrm {signum}\left (x^{6}-1\right )}\, \left (\frac {\sqrt {\pi }\, \left (-4 x^{6}+8\right )}{4 x^{6}}-\frac {2 \sqrt {\pi }\, \sqrt {-x^{6}+1}}{x^{6}}+2 \sqrt {\pi }\, \ln \left (\frac {1}{2}+\frac {\sqrt {-x^{6}+1}}{2}\right )-\left (-2 \ln \relax (2)-1+6 \ln \relax (x )+i \pi \right ) \sqrt {\pi }-\frac {2 \sqrt {\pi }}{x^{6}}\right )}{12 \sqrt {\pi }\, \sqrt {-\mathrm {signum}\left (x^{6}-1\right )}}-\frac {i \sqrt {\mathrm {signum}\left (x^{6}-1\right )}\, \left (-\frac {4 i \sqrt {\pi }\, \sqrt {-x^{6}+1}}{x^{3}}-4 i \sqrt {\pi }\, \arcsin \left (x^{3}\right )\right )}{6 \sqrt {\pi }\, \sqrt {-\mathrm {signum}\left (x^{6}-1\right )}}\) \(157\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x^3+1)*(x^6-1)^(1/2)/x^7,x,method=_RETURNVERBOSE)

[Out]

-1/6*(4*x^3+1)*(x^6-1)^(1/2)/x^6-2/3*ln(-x^3+(x^6-1)^(1/2))-1/6*RootOf(_Z^2+1)*ln((-RootOf(_Z^2+1)+(x^6-1)^(1/
2))/x^3)

________________________________________________________________________________________

maxima [A]  time = 0.42, size = 67, normalized size = 1.12 \begin {gather*} -\frac {2 \, \sqrt {x^{6} - 1}}{3 \, x^{3}} - \frac {\sqrt {x^{6} - 1}}{6 \, x^{6}} + \frac {1}{6} \, \arctan \left (\sqrt {x^{6} - 1}\right ) + \frac {1}{3} \, \log \left (\frac {\sqrt {x^{6} - 1}}{x^{3}} + 1\right ) - \frac {1}{3} \, \log \left (\frac {\sqrt {x^{6} - 1}}{x^{3}} - 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x^3+1)*(x^6-1)^(1/2)/x^7,x, algorithm="maxima")

[Out]

-2/3*sqrt(x^6 - 1)/x^3 - 1/6*sqrt(x^6 - 1)/x^6 + 1/6*arctan(sqrt(x^6 - 1)) + 1/3*log(sqrt(x^6 - 1)/x^3 + 1) -
1/3*log(sqrt(x^6 - 1)/x^3 - 1)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {\sqrt {x^6-1}\,\left (2\,x^3+1\right )}{x^7} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((x^6 - 1)^(1/2)*(2*x^3 + 1))/x^7,x)

[Out]

int(((x^6 - 1)^(1/2)*(2*x^3 + 1))/x^7, x)

________________________________________________________________________________________

sympy [C]  time = 5.30, size = 153, normalized size = 2.55 \begin {gather*} \begin {cases} \frac {i \operatorname {acosh}{\left (\frac {1}{x^{3}} \right )}}{6} + \frac {i}{6 x^{3} \sqrt {-1 + \frac {1}{x^{6}}}} - \frac {i}{6 x^{9} \sqrt {-1 + \frac {1}{x^{6}}}} & \text {for}\: \frac {1}{\left |{x^{6}}\right |} > 1 \\- \frac {\operatorname {asin}{\left (\frac {1}{x^{3}} \right )}}{6} - \frac {\sqrt {1 - \frac {1}{x^{6}}}}{6 x^{3}} & \text {otherwise} \end {cases} + 2 \left (\begin {cases} - \frac {x^{3}}{3 \sqrt {x^{6} - 1}} + \frac {\operatorname {acosh}{\left (x^{3} \right )}}{3} + \frac {1}{3 x^{3} \sqrt {x^{6} - 1}} & \text {for}\: \left |{x^{6}}\right | > 1 \\\frac {i x^{3}}{3 \sqrt {1 - x^{6}}} - \frac {i \operatorname {asin}{\left (x^{3} \right )}}{3} - \frac {i}{3 x^{3} \sqrt {1 - x^{6}}} & \text {otherwise} \end {cases}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x**3+1)*(x**6-1)**(1/2)/x**7,x)

[Out]

Piecewise((I*acosh(x**(-3))/6 + I/(6*x**3*sqrt(-1 + x**(-6))) - I/(6*x**9*sqrt(-1 + x**(-6))), 1/Abs(x**6) > 1
), (-asin(x**(-3))/6 - sqrt(1 - 1/x**6)/(6*x**3), True)) + 2*Piecewise((-x**3/(3*sqrt(x**6 - 1)) + acosh(x**3)
/3 + 1/(3*x**3*sqrt(x**6 - 1)), Abs(x**6) > 1), (I*x**3/(3*sqrt(1 - x**6)) - I*asin(x**3)/3 - I/(3*x**3*sqrt(1
 - x**6)), True))

________________________________________________________________________________________