3.8.41 \(\int \frac {1}{\sqrt [4]{b+a x^4} (-b+a x^8)} \, dx\)

Optimal. Leaf size=57 \[ \frac {\text {RootSum}\left [\text {$\#$1}^8-2 \text {$\#$1}^4 a+a^2-a b\& ,\frac {\log \left (\sqrt [4]{a x^4+b}-\text {$\#$1} x\right )-\log (x)}{\text {$\#$1}}\& \right ]}{8 b} \]

________________________________________________________________________________________

Rubi [B]  time = 0.21, antiderivative size = 253, normalized size of antiderivative = 4.44, number of steps used = 9, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {1429, 377, 212, 206, 203} \begin {gather*} -\frac {\tan ^{-1}\left (\frac {\sqrt [8]{a} x \sqrt [4]{\sqrt {a}-\sqrt {b}}}{\sqrt [4]{a x^4+b}}\right )}{4 \sqrt [8]{a} b \sqrt [4]{\sqrt {a}-\sqrt {b}}}-\frac {\tan ^{-1}\left (\frac {\sqrt [8]{a} x \sqrt [4]{\sqrt {a}+\sqrt {b}}}{\sqrt [4]{a x^4+b}}\right )}{4 \sqrt [8]{a} b \sqrt [4]{\sqrt {a}+\sqrt {b}}}-\frac {\tanh ^{-1}\left (\frac {\sqrt [8]{a} x \sqrt [4]{\sqrt {a}-\sqrt {b}}}{\sqrt [4]{a x^4+b}}\right )}{4 \sqrt [8]{a} b \sqrt [4]{\sqrt {a}-\sqrt {b}}}-\frac {\tanh ^{-1}\left (\frac {\sqrt [8]{a} x \sqrt [4]{\sqrt {a}+\sqrt {b}}}{\sqrt [4]{a x^4+b}}\right )}{4 \sqrt [8]{a} b \sqrt [4]{\sqrt {a}+\sqrt {b}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((b + a*x^4)^(1/4)*(-b + a*x^8)),x]

[Out]

-1/4*ArcTan[(a^(1/8)*(Sqrt[a] - Sqrt[b])^(1/4)*x)/(b + a*x^4)^(1/4)]/(a^(1/8)*(Sqrt[a] - Sqrt[b])^(1/4)*b) - A
rcTan[(a^(1/8)*(Sqrt[a] + Sqrt[b])^(1/4)*x)/(b + a*x^4)^(1/4)]/(4*a^(1/8)*(Sqrt[a] + Sqrt[b])^(1/4)*b) - ArcTa
nh[(a^(1/8)*(Sqrt[a] - Sqrt[b])^(1/4)*x)/(b + a*x^4)^(1/4)]/(4*a^(1/8)*(Sqrt[a] - Sqrt[b])^(1/4)*b) - ArcTanh[
(a^(1/8)*(Sqrt[a] + Sqrt[b])^(1/4)*x)/(b + a*x^4)^(1/4)]/(4*a^(1/8)*(Sqrt[a] + Sqrt[b])^(1/4)*b)

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 1429

Int[((d_) + (e_.)*(x_)^(n_))^(q_)/((a_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{r = Rt[-(a*c), 2]}, -Dist[c/(2
*r), Int[(d + e*x^n)^q/(r - c*x^n), x], x] - Dist[c/(2*r), Int[(d + e*x^n)^q/(r + c*x^n), x], x]] /; FreeQ[{a,
 c, d, e, n, q}, x] && EqQ[n2, 2*n] && NeQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[q]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt [4]{b+a x^4} \left (-b+a x^8\right )} \, dx &=-\frac {\sqrt {a} \int \frac {1}{\left (\sqrt {a} \sqrt {b}-a x^4\right ) \sqrt [4]{b+a x^4}} \, dx}{2 \sqrt {b}}-\frac {\sqrt {a} \int \frac {1}{\left (\sqrt {a} \sqrt {b}+a x^4\right ) \sqrt [4]{b+a x^4}} \, dx}{2 \sqrt {b}}\\ &=-\frac {\sqrt {a} \operatorname {Subst}\left (\int \frac {1}{\sqrt {a} \sqrt {b}-\left (a^{3/2} \sqrt {b}-a b\right ) x^4} \, dx,x,\frac {x}{\sqrt [4]{b+a x^4}}\right )}{2 \sqrt {b}}-\frac {\sqrt {a} \operatorname {Subst}\left (\int \frac {1}{\sqrt {a} \sqrt {b}-\left (a^{3/2} \sqrt {b}+a b\right ) x^4} \, dx,x,\frac {x}{\sqrt [4]{b+a x^4}}\right )}{2 \sqrt {b}}\\ &=-\frac {\operatorname {Subst}\left (\int \frac {1}{1-\sqrt [4]{a} \sqrt {\sqrt {a}-\sqrt {b}} x^2} \, dx,x,\frac {x}{\sqrt [4]{b+a x^4}}\right )}{4 b}-\frac {\operatorname {Subst}\left (\int \frac {1}{1+\sqrt [4]{a} \sqrt {\sqrt {a}-\sqrt {b}} x^2} \, dx,x,\frac {x}{\sqrt [4]{b+a x^4}}\right )}{4 b}-\frac {\operatorname {Subst}\left (\int \frac {1}{1-\sqrt [4]{a} \sqrt {\sqrt {a}+\sqrt {b}} x^2} \, dx,x,\frac {x}{\sqrt [4]{b+a x^4}}\right )}{4 b}-\frac {\operatorname {Subst}\left (\int \frac {1}{1+\sqrt [4]{a} \sqrt {\sqrt {a}+\sqrt {b}} x^2} \, dx,x,\frac {x}{\sqrt [4]{b+a x^4}}\right )}{4 b}\\ &=-\frac {\tan ^{-1}\left (\frac {\sqrt [8]{a} \sqrt [4]{\sqrt {a}-\sqrt {b}} x}{\sqrt [4]{b+a x^4}}\right )}{4 \sqrt [8]{a} \sqrt [4]{\sqrt {a}-\sqrt {b}} b}-\frac {\tan ^{-1}\left (\frac {\sqrt [8]{a} \sqrt [4]{\sqrt {a}+\sqrt {b}} x}{\sqrt [4]{b+a x^4}}\right )}{4 \sqrt [8]{a} \sqrt [4]{\sqrt {a}+\sqrt {b}} b}-\frac {\tanh ^{-1}\left (\frac {\sqrt [8]{a} \sqrt [4]{\sqrt {a}-\sqrt {b}} x}{\sqrt [4]{b+a x^4}}\right )}{4 \sqrt [8]{a} \sqrt [4]{\sqrt {a}-\sqrt {b}} b}-\frac {\tanh ^{-1}\left (\frac {\sqrt [8]{a} \sqrt [4]{\sqrt {a}+\sqrt {b}} x}{\sqrt [4]{b+a x^4}}\right )}{4 \sqrt [8]{a} \sqrt [4]{\sqrt {a}+\sqrt {b}} b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 0.39, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt [4]{b+a x^4} \left (-b+a x^8\right )} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Integrate[1/((b + a*x^4)^(1/4)*(-b + a*x^8)),x]

[Out]

Integrate[1/((b + a*x^4)^(1/4)*(-b + a*x^8)), x]

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.40, size = 57, normalized size = 1.00 \begin {gather*} \frac {\text {RootSum}\left [a^2-a b-2 a \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {-\log (x)+\log \left (\sqrt [4]{b+a x^4}-x \text {$\#$1}\right )}{\text {$\#$1}}\&\right ]}{8 b} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/((b + a*x^4)^(1/4)*(-b + a*x^8)),x]

[Out]

RootSum[a^2 - a*b - 2*a*#1^4 + #1^8 & , (-Log[x] + Log[(b + a*x^4)^(1/4) - x*#1])/#1 & ]/(8*b)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x^4+b)^(1/4)/(a*x^8-b),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{{\left (a x^{8} - b\right )} {\left (a x^{4} + b\right )}^{\frac {1}{4}}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x^4+b)^(1/4)/(a*x^8-b),x, algorithm="giac")

[Out]

integrate(1/((a*x^8 - b)*(a*x^4 + b)^(1/4)), x)

________________________________________________________________________________________

maple [F]  time = 0.03, size = 0, normalized size = 0.00 \[\int \frac {1}{\left (a \,x^{4}+b \right )^{\frac {1}{4}} \left (a \,x^{8}-b \right )}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*x^4+b)^(1/4)/(a*x^8-b),x)

[Out]

int(1/(a*x^4+b)^(1/4)/(a*x^8-b),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{{\left (a x^{8} - b\right )} {\left (a x^{4} + b\right )}^{\frac {1}{4}}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x^4+b)^(1/4)/(a*x^8-b),x, algorithm="maxima")

[Out]

integrate(1/((a*x^8 - b)*(a*x^4 + b)^(1/4)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} -\int \frac {1}{{\left (a\,x^4+b\right )}^{1/4}\,\left (b-a\,x^8\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-1/((b + a*x^4)^(1/4)*(b - a*x^8)),x)

[Out]

-int(1/((b + a*x^4)^(1/4)*(b - a*x^8)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt [4]{a x^{4} + b} \left (a x^{8} - b\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x**4+b)**(1/4)/(a*x**8-b),x)

[Out]

Integral(1/((a*x**4 + b)**(1/4)*(a*x**8 - b)), x)

________________________________________________________________________________________